[1] A.R. Zarrati, H. Gholami, M. Mashahir, Application of collar to control scouring around rectangular bridge piers, Journal of Hydraulic Research, 42(1) (2004) 97-103.
[2] T. Esmaeili, A. Dehghani, A. Zahiri, K. Suzuki, 3D Numerical simulation of scouring around bridge piers (Case Study: Bridge 524 crosses the Tanana River), World Academy of Science, Engineering and Technology, 58 (2009) 1028-1032.
[3] A. Roulund, B.M. Sumer, J. Fredsøe, J. Michelsen, Numerical and experimental investigation of flow and scour around a circular pile, Journal of Fluid Mechanics, 534 (2005) 351-401.
[4] A. Zarrati, M. Nazariha, M. Mashahir, Reduction of local scour in the vicinity of bridge pier groups using collars and riprap, Journal of Hydraulic Engineering, 132(2) (2006) 154-162.
[5] B.W. Melville, A.J. Raudkivi, Flow characteristics in local scour at bridge piers, Journal of Hydraulic Research, 15(4) (1977) 373-380.
[6] B. Dargahi, Controlling mechanism of local scouring, Journal of Hydraulic Engineering, 116(10) (1990) 1197-1214.
[7] G. Deng, J. Piquet, Navier‐Stokes computations of horseshoe vortex flows, International journal for numerical methods in fluids, 15(1) (1992) 99-124.
[8] J.E. Richardson, V.G. Panchang, Three-dimensional simulation of scour-inducing flow at bridge piers, Journal of Hydraulic Engineering, 124(5) (1998) 530-540.
[9] N.R. Olsen, M.C. Melaaen, Three-dimensional calculation of scour around cylinders, Journal of Hydraulic Engineering, 119(9) (1993) 1048-1054.
[10] M. Muzzammil, T. Gangadharaiah, A. Gupta, An experimental investigation of a horseshoe vortex induced by a bridge pier, in: Proceedings of the institution of civil engineers-water management, Thomas Telford Ltd, 2004, pp. 109-119.
[11] M. Vaghefi, M. Ghodsian, S. Salimi, The effect of circular bridge piers with different inclination angles toward downstream on scour, Sadhana, 41(1) (2016) 75-86.
[12] X. Liu, M.H. García, Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour, Journal of waterway, port, coastal, and ocean engineering, 134(4) (2008) 203-217.
[13] Y. Aghaee, H. Hakimzadeh, Three dimensional numerical modeling of flow around bridge piers using LES and RANS, in: River Flow, 2010, pp. 211-218.
[14] P. Cunha Ramos, J.P. Pêgo, R. Maia, Numerical simulation of the flow around a pier using OpenFOAM, in: 3rd IAHR Europe Congress, 2014.
[15] A. Khosronejad, S. Kang, F. Sotiropoulos, Experimental and computational investigation of local scour around bridge piers, Advances in Water Resources, 37 (2012) 73-85.
[16] L. Zhou, Numerical modelling of scour in steady flows, Doctoral dissertation, Université de Lyon, 2017.
[17] C. Baykal, B.M. Sumer, D.R. Fuhrman, N.G. Jacobsen, J. Fredsøe, Numerical simulation of scour and backfilling processes around a circular pile in waves, Coastal Engineering, 122 (2017) 87-107.
[18] C. Baykal, B.M. Sumer, D.R. Fuhrman, N.G. Jacobsen, J. Fredsøe, Numerical investigation of flow and scour around a vertical circular cylinder, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2033) (2015) 20140104.
[19] S. Abdelaziz, M.-D. Bui, P. Rutschmann, Numerical simulation of scour development due to submerged horizontal jet, River Flow 2010, (2014) 1597-1604.
[20] Y. Li, D.M. Kelly, M. Li, J.M. Harris, Development of a new 3D Euler-Lagrange model for the prediction of scour around offshore structures, Coastal Engineering Proceedings, 1(34) (2014) 31.
[21] J. Shim, G. Duan, H. Jo, Simulating Sediment Transport around a Bridge Pier Using Open FOAM Software, in: 16th World Environmental and Water Resources Congress 2016: Hydraulics and Waterways and Hydro-Climate/Climate Change, American Society of Civil Engineers (ASCE), 2016, pp. 362-369.
[22] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson education, 2007.
[23] A. Lopez, LPT for erosion modeling in OpenFOAM, in, 2014.
[24] R. Kasper, J. Turnow, N. Kornev, Numerical modeling and simulation of particulate fouling of structured heat transfer surfaces using a multiphase Euler-Lagrange approach, International Journal of Heat and Mass Transfer, 115 (2017) 932-945.
[25] J.D. Schwarzkopf, M. Sommerfeld, C.T. Crowe, Y. Tsuji, Multiphase flows with droplets and particles, CRC press, 2011.
[26] H. Tofighian, E. Amani, M. Saffar-Avval, Parcel-number-density control algorithms for the efficient simulation of particle-laden two-phase flows, Journal of Computational Physics, 387 (2019) 569-588.
[27] A. Fluent, ANSYS fluent theory guide 15.0, ANSYS, Canonsburg, PA, (2013).