Analytical-Numerical Investigation of Unequal Sized Droplets of Dilatants' Fluid in T-Junction with Unequal Length Branches

Document Type : Research Article

Author

Technical and Vocational University

Abstract

In this paper we performed an analytical and 3 dimensional numerical investigation for breakup of non-Newtonian droplets in a non-Newtonian carrier fluid. The system geometry is T-junction with unequal length branches that can generates unequal sized droplets. Analytical and 3 dimensional numerical results of this research have good agreement with each other. We investigated variation of many quantities during the breakup process such as: flow rate ratio of branches, velocity ratio of branches, droplet length in each branch, whole length of droplet, vorticity, pressure and effective viscosity. The analytical results of this paper reveal the variation of flow rate ratio of branches, velocity ratio of branches, droplet length in each branches and whole length of droplet during the breakup process. The results showed the flow rate ratio of branches and the velocity ratio of branches is constant during the breakup process. Also we observed the droplet length in each branches and whole length of droplet increase linearly during the breakup process. The results showed vorticity near the surface of the droplet is 3 to 7 times the vorticity of the inside of the droplet, therefore the mixing of the materials of the droplet inside increases. Also the maximum vorticity is before reaching the droplet to the center of junction.

Keywords

Main Subjects


[1] B. L. Khoo, G. Grenci, Y. B. Lim, S. C. Lee, J. Han, C. T. Lim, Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device, Nature protocols, 13(1) (2018) 34-58.
[2] Q. Xiong et al., Magnetic nanochain integrated microfluidic biochips, NATURE COMMUNICATIONS, 9(1743) (2018) 1-11.
[3] F. S. Ruggeri et al., Microfluidic deposition for resolving single molecule protein architecture and heterogeneity, NATURE COMMUNICATIONS, 9(3890) (2018) 1-12.
[4] L. D. Maio, F. Dunlop, Sessile Drop on Oscillating Incline. Journal of Applied Fluid Mechanics, 11(6) (2018) 1471-1476.
[5] J. Q. Feng, A Computational Study of High-Speed Microdroplet Impact onto a Smooth Solid Surface, Journal of Applied Fluid Mechanics, 10(1) (2017) 243-256.
[6] A. Kiani Moqadam, A. Bedram, M. H. Hamedi, A Novel Method (T-Junction with a Tilted Slat) for Controlling Breakup Volume Ratio of Droplets in Micro and Nanofluidic T-Junctions, Journal of Applied Fluid Mechanics, 11(1) (2018) 1255-1265.
[7] W. Du, T. Fu, Y. Duan, C. Zhu, Y. Ma, H. Z. Li, Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device, Chemical Engineering Science, 176 (2018) 66-76.
[8] Z. Liu, J. Zhao, Y. Pang, X. Wang, Generation of droplets in the T-junction with a constriction microchannel, Microfluidics and Nanofluidics, 22(124) (2018) 1-9.
[9] X. Sun, C. Zhu, T. Fu, Y. Ma, H. Z. Li, Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction, Chemical Engineering Science, 188 (2018) 158-169.
[10] A. E. M. Mora, A. L. F. L. Silva, S. M. M. L. Silva, Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM, Chemical Engineering Science, 196 (2019) 514-526.
[11] A. Bedram, A. Moosavi, Breakup of Droplets in Micro and Nanofluidic T-Junctions, Journal of Applied Fluid Mechanics, 6(1) (2013) 81-86.
[12] T. Fu, Y. Ma, H. Z. Li, Hydrodynamic Feedback on Bubble Breakup at a T-junction Within an Asymmetric Loop, AIChE Journal, 60(5) (2014) 1920-1929.
[13] A. Bedram, A. Moosavi, Droplet breakup in an asymmetric microfluidic T junction, Eur. Phys. J. E, 34(78) (2011) 1-8.
[14] X. Hu, T. Cubaud, Viscous Wave Breaking and Ligament Formation in Microfluidic Systems, PHYSICAL REVIEW LETTERS, 121(044502) (2018) 1-5.
[15] A. Bedram, A. E. Darabi, A. Moosavi, S. Kazemzade, Numerical Investigation of an Efficient Method (T-Junction With Valve) for Producing Unequal-Sized Droplets in Micro- and Nano-Fluidic Systems, Journal of Fluids Engineering, 137(031202) (2015) 1-9.
[16] A. Bedram, A. Moosavi, S. Kazemzade Hannani, Analytical relations for long-droplet breakup in asymmetric T junctions, PHYSICAL REVIEW E, 91(053012) (2015) 1-11.
[17] X. Wang, C. Zhu, T. Fu, T. Qiu, Y. Ma, Critical condition for bubble breakup in a microfluidic flow-focusing junction, Chemical Engineering Science, 164 (2017) 178–187.
[18] A. Bedram, A. Moosavi, A novel method for producing unequal sized droplets in micro and nanofluidic channels, European Physical Journal E, 38(96) (2015) 1-9.
[19] E. Amani, A. Ahmadpour, M. Tohidi, A numerical study of the rise of a Taylor bubble through a sudden/gradual expansion in Newtonian and shear-thinning liquids, International Journal of Mechanical Sciences, 152 (2019) 236-246.
[20] C. Dai et al., Experimental study of bubble breakup process in non-Newtonian fluid in 3-D pore-throat microchannels, Colloids and Surfaces A, 535 (2017) 130-138.
[21] D. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone, Geometrically Mediated Breakup of Drops in Microfluidic Devices, Phys. Rev. Lett., 92(054503) (2004) 1-4.
[22] F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech., 10(2) (1961) 166-188.
[23] Y. S. Muzychka, J. Edge, Laminar Non-Newtonian Fluid Flow in Noncircular Ducts and Microchannels, Journal of Fluids Engineering, 130(111201) (2008) 1-7.
[24] A. M. Leshansky, L. M. Pismen, Breakup of drops in a microfluidic T-junction, Physics of Fluids, 21(023303) (2009)1-6.