[1] B. L. Khoo, G. Grenci, Y. B. Lim, S. C. Lee, J. Han, C. T. Lim, Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device, Nature protocols, 13(1) (2018) 34-58.
[2] Q. Xiong et al., Magnetic nanochain integrated microfluidic biochips, NATURE COMMUNICATIONS, 9(1743) (2018) 1-11.
[3] F. S. Ruggeri et al., Microfluidic deposition for resolving single molecule protein architecture and heterogeneity, NATURE COMMUNICATIONS, 9(3890) (2018) 1-12.
[4] L. D. Maio, F. Dunlop, Sessile Drop on Oscillating Incline. Journal of Applied Fluid Mechanics, 11(6) (2018) 1471-1476.
[5] J. Q. Feng, A Computational Study of High-Speed Microdroplet Impact onto a Smooth Solid Surface, Journal of Applied Fluid Mechanics, 10(1) (2017) 243-256.
[6] A. Kiani Moqadam, A. Bedram, M. H. Hamedi, A Novel Method (T-Junction with a Tilted Slat) for Controlling Breakup Volume Ratio of Droplets in Micro and Nanofluidic T-Junctions, Journal of Applied Fluid Mechanics, 11(1) (2018) 1255-1265.
[7] W. Du, T. Fu, Y. Duan, C. Zhu, Y. Ma, H. Z. Li, Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device, Chemical Engineering Science, 176 (2018) 66-76.
[8] Z. Liu, J. Zhao, Y. Pang, X. Wang, Generation of droplets in the T-junction with a constriction microchannel, Microfluidics and Nanofluidics, 22(124) (2018) 1-9.
[9] X. Sun, C. Zhu, T. Fu, Y. Ma, H. Z. Li, Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction, Chemical Engineering Science, 188 (2018) 158-169.
[10] A. E. M. Mora, A. L. F. L. Silva, S. M. M. L. Silva, Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM, Chemical Engineering Science, 196 (2019) 514-526.
[11] A. Bedram, A. Moosavi, Breakup of Droplets in Micro and Nanofluidic T-Junctions, Journal of Applied Fluid Mechanics, 6(1) (2013) 81-86.
[12] T. Fu, Y. Ma, H. Z. Li, Hydrodynamic Feedback on Bubble Breakup at a T-junction Within an Asymmetric Loop, AIChE Journal, 60(5) (2014) 1920-1929.
[13] A. Bedram, A. Moosavi, Droplet breakup in an asymmetric microfluidic T junction, Eur. Phys. J. E, 34(78) (2011) 1-8.
[14] X. Hu, T. Cubaud, Viscous Wave Breaking and Ligament Formation in Microfluidic Systems, PHYSICAL REVIEW LETTERS, 121(044502) (2018) 1-5.
[15] A. Bedram, A. E. Darabi, A. Moosavi, S. Kazemzade, Numerical Investigation of an Efficient Method (T-Junction With Valve) for Producing Unequal-Sized Droplets in Micro- and Nano-Fluidic Systems, Journal of Fluids Engineering, 137(031202) (2015) 1-9.
[16] A. Bedram, A. Moosavi, S. Kazemzade Hannani, Analytical relations for long-droplet breakup in asymmetric T junctions, PHYSICAL REVIEW E, 91(053012) (2015) 1-11.
[17] X. Wang, C. Zhu, T. Fu, T. Qiu, Y. Ma, Critical condition for bubble breakup in a microfluidic flow-focusing junction, Chemical Engineering Science, 164 (2017) 178–187.
[18] A. Bedram, A. Moosavi, A novel method for producing unequal sized droplets in micro and nanofluidic channels, European Physical Journal E, 38(96) (2015) 1-9.
[19] E. Amani, A. Ahmadpour, M. Tohidi, A numerical study of the rise of a Taylor bubble through a sudden/gradual expansion in Newtonian and shear-thinning liquids, International Journal of Mechanical Sciences, 152 (2019) 236-246.
[20] C. Dai et al., Experimental study of bubble breakup process in non-Newtonian fluid in 3-D pore-throat microchannels, Colloids and Surfaces A, 535 (2017) 130-138.
[21] D. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone, Geometrically Mediated Breakup of Drops in Microfluidic Devices, Phys. Rev. Lett., 92(054503) (2004) 1-4.
[22] F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech., 10(2) (1961) 166-188.
[23] Y. S. Muzychka, J. Edge, Laminar Non-Newtonian Fluid Flow in Noncircular Ducts and Microchannels, Journal of Fluids Engineering, 130(111201) (2008) 1-7.
[24] A. M. Leshansky, L. M. Pismen, Breakup of drops in a microfluidic T-junction, Physics of Fluids, 21(023303) (2009)1-6.