[1] J.A. Kanis, P. Delmas, P. Burckhardt, C. Cooper, D.o. Torgerson, Guidelines for diagnosis and management of osteoporosis, Osteoporosis International, 7(4) (1997) 390-406.
[2] J.A. Kanis, D. Hans, C. Cooper, S. Baim, J.P. Bilezikian, N. Binkley, J.A. Cauley, J.E. Compston, B. Dawson-Hughes, G.E.-H. Fuleihan, Interpretation and use of FRAX in clinical practice, Osteoporosis international, 22(9) (2011) 2395.
[3] J.A. Kanis, E.V. McCloskey, H. Johansson, C. Cooper, R. Rizzoli, J.-Y. Reginster, European guidance for the diagnosis and management of osteoporosis in postmenopausal women, Osteoporosis international, 24(1) (2013) 23-57.
[4] A. Cranney, S.A. Jamal, J.F. Tsang, R.G. Josse, W.D. Leslie, Low bone mineral density and fracture burden in postmenopausal women, Cmaj, 177(6) (2007) 575-580.
[5] M.R. McClung, The relationship between bone mineral density and fracture risk, Current osteoporosis reports, 3(2) (2005) 57-63.
[6] C.A. Cefalu, Is bone mineral density predictive of fracture risk reduction?, Current medical research and opinion, 20(3) (2004) 341-349.
[7] A. Unnanuntana, B.P. Gladnick, E. Donnelly, J.M. Lane, The assessment of fracture risk, The Journal of Bone and Joint Surgery. American volume., 92(3) (2010) 743.
[8] D.D. Cody, G.J. Gross, F.J. Hou, H.J. Spencer, S.A. Goldstein, D.P. Fyhrie, Femoral strength is better predicted by finite element models than QCT and DXA, Journal of biomechanics, 32(10) (1999) 1013-1020.
[9] M. Mirzaei, M. Keshavarzian, F. Alavi, P. Amiri, S. Samiezadeh, QCT-based failure analysis of proximal femurs under various loading orientations, Medical & biological engineering & computing, 53(6) (2015) 477-486.
[10] M. Mirzaei, M. Keshavarzian, V. Naeini, Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method, Bone, 64 (2014) 108-114.
[11] M. Mirzaei, S. Samiezadeh, A. Khodadadi, M.R. Ghazavi, Finite element prediction and experimental verification of the failure pattern of proximal femur using quantitative computed tomography images, in: Proceedings of the International Conference on Biomechanics and Biomedical Engineering, 2012, pp. 111-117.
[12] J.F. Griffith, H.K. Genant, Bone mass and architecture determination: state of the art, Best Practice & Research Clinical Endocrinology & Metabolism, 22(5) (2008) 737-764.
[13] A. Bettamer, A. Almhdie-Imjabber, R. Hambli, S. Allaoui, M. Mahmud, R. Jennane, The use of dual-energy X-ray absorptiometry images to evaluate the risk of bone fracture, in: 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), IEEE, 2015, pp. 319-322.
[14] E. Dall’Ara, B. Luisier, R. Schmidt, M. Pretterklieber, F. Kainberger, P. Zysset, D. Pahr, DXA predictions of human femoral mechanical properties depend on the load configuration, Medical Engineering and Physics, 35(11) (2013) 1564-1572.
[15] L. Yang, N. Parimi, E. Orwoll, D. Black, J. Schousboe, R. Eastell, O.F.i.M.S.R. Group, Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the Osteoporotic Fractures in Men (MrOS) study, Osteoporosis International, 29(3) (2018) 643-651.
[16] K.E. Naylor, E.V. McCloskey, R. Eastell, L. Yang, Use of DXA‐based finite element analysis of the proximal femur in a longitudinal study of hip fracture, Journal of Bone and Mineral Research, 28(5) (2013) 1014-1021.
[17] M. Nasiri, Y. Luo, Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling, Bone, 90 (2016) 90-98.
[18] E. Dall’Ara, R. Eastell, M. Viceconti, D. Pahr, L. Yang, Experimental validation of DXA-based finite element models for prediction of femoral strength, Journal of the mechanical behavior of biomedical materials, 63 (2016) 17-25.
[19] Y. Luo, S. Ahmed, W.D. Leslie, Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk, Computer methods and programs in biomedicine, 155 (2018) 75-83.
[20] S. Yang, W. Leslie, Y. Luo, A. Goertzen, S. Ahmed, L. Ward, I. Delubac, L. Lix, Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study, Osteoporosis International, 29(1) (2018) 191-200.
[21] S. Yang, Y. Luo, L. Yang, E. Dall'Ara, R. Eastell, A.L. Goertzen, E.V. McCloskey, W.D. Leslie, L.M. Lix, Comparison of femoral strength and fracture risk index derived from DXA-based finite element analysis for stratifying hip fracture risk: A cross-sectional study, Bone, 110 (2018) 386-391.
[22] Y. Luo, H. Yang, Assessment of hip fracture risk by cross-sectional strain-energy derived from image-based beam model, Clinical Biomechanics, 63 (2019) 48-53.
[23] J.H. Keyak, Improved prediction of proximal femoral fracture load using nonlinear finite element models, Medical engineering & physics, 23(3) (2001) 165-173.
[24] G.M. Blake, D.B. McKeeney, S.C. Chhaya, P.J. Ryan, I. Fogelman, Dual energy x‐ray absorptiometry: The effects of beam hardening on bone density measurements, Medical physics, 19(2) (1992) 459-465.
[25] A.M. Baker, D.W. Wagner, B.J. Kiratli, G.S. Beaupre, Pixel-Based DXA-Derived Structural Properties Strongly Correlate with pQCT Measures at the One-Third Distal Femur Site, Annals of biomedical engineering, 45(5) (2017) 1247-1254.
[26] X.N. Dong, R. Pinninti, T. Lowe, P. Cussen, J.E. Ballard, D. Di Paolo, M. Shirvaikar, Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures, Journal of biomechanics, 48(6) (2015) 1043-1051.
[27] J.H. Keyak, Y. Falkinstein, Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load, Medical engineering & physics, 25(9) (2003) 781-787.
[28] Y. Luo, Empirical functions for conversion of femur areal and volumetric bone mineral density, Journal of Medical and Biological Engineering, 39(3) (2019) 287-293.
[29] M. Mirzaei, F. Alavi, F. Allaveisi, V. Naeini, P. Amiri, Linear and nonlinear analyses of femoral fractures: Computational/experimental study, Journal of biomechanics, 79 (2018) 155-163.