[1] X.L. Jia, J. Yang, S. Kitipornchai, Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces, Acta mechanica, 218(1-2) (2011) 161-174.
[2] R. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Materials and Structures, 16(6) (2007) R23.
[3] M.I. Younis, F. Alsaleem, D. Jordy, The response of clamped–clamped microbeams under mechanical shock, International Journal of Non-Linear Mechanics, 42(4) (2007) 643-657.
[4] V.K. Varadan, K.J. Vinoy, S. Gopalakrishnan, Smart material systems and MEMS: design and development methodologies, John Wiley & Sons, 2006.
[5] P. Li, Y. Fang, R. Hu, Thermoelastic damping in rectangular and circular microplate resonators, Journal of Sound and Vibration, 331(3) (2012) 721-733.
[6] A.H. Nayfeh, M.I. Younis, A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping, Journal of Micromechanics and Microengineering, 14(2) (2003) 170.
[7] R. Lifshitz, M.L. Roukes, Thermoelastic damping in micro-and nanomechanical systems, Physical review B, 61(8) (2000) 5600.
[8] M. Amabili, Nonlinear vibrations of viscoelastic rectangular plates, Journal of Sound and Vibration, 362 (2016) 142-156.
[9] A. Fareh, S.A. Messaoudi, Energy decay for a porous thermoelastic system with thermoelasticity of second sound and with a non-necessary positive definite energy, Applied Mathematics and Computation, 293 (2017) 493-507.
[10] A.H. Nayfeh, M.I. Younis, Modeling and simulations of thermoelastic damping in microplates, Journal of Micromechanics and Microengineering, 14(12) (2004) 1711.
[11] C. Zener, Internal friction in solids. I. Theory of internal friction in reeds, Physical review, 52(3) (1937) 230.
[12] T.V. Roszhart, The effect of thermoelastic internal friction on the Q of micromachined silicon resonators, in: IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, IEEE, 1990, pp. 13-16.
[13] S.K. De, N.R. Aluru, Theory of thermoelastic damping in electrostatically actuated microstructures, Physical Review B, 74(14) (2006) 144305.
[14] S. Dowlati, S. Azizi, S. Najafi, Quality Factor of Free In-plane Vibration of a Fully Clamped Rectangular Micro-plate, International Journal of Engineering, 31(1) (2018) 96-103.
[15] A.H. Nayfeh, P.F. Pai, Linear and nonlinear structural mechanics, John Wiley & Sons, 2008.
[16] B.A. Boley, J.H. Weiner, Theory of thermal stresses, Courier Corporation, 2012.
[17] V. Borjalilou, M. Asghari, E. Bagheri, Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model, Journal of Thermal Stresses, (2019) 1-14.
[18] Z. Li, L. Zhao, Z. Jiang, Y. Zhao, J. Li, J. Zhang, Y. Zhao, L. Lin, A closed-form approach for the resonant frequency analysis of clamped rectangular microplates under distributed electrostatic force, Sensors and Actuators A: Physical, 280 (2018) 447-458.
[19] Y. Hu, J. Yang, S. Kitipornchai, Snap-through and pull-in analysis of an electro-dynamically actuated curved micro-beam using a nonlinear beam model, Journal of Sound and Vibration, 332(15) (2013) 3821-3832.