[1] J. Schwinge, D. Wiley, D. Fletcher, A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules, Journal of Desalination, 146(1-3) (2002) 195-201.
[2] S. Wardeh, H. Morvan, CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination, Journal of Chemical Engineering Research and Design 86(10) (2008) 1107-1116.
[3] L. Song, S. Ma, Numerical studies of the impact of spacer geometry on concentration polarization in spiral wound membrane modules, Journal of Industrial engineering chemistry research, 44(20) (2005) 7638-7645.
[4] V. Geraldes, V. Semião, M.N. Pinho, Hydrodynamics and concentration polarization in NF/RO spiral-wound modules with ladder-type spacers, Journal of Desalination, 157(1-3) (2003) 395-402.
[5] M. Amokrane, D. Sadaoui, C. Koutsou, A. Karabelas, M. Dudeck, A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination, Journal of Membrane Science, 477 (2015) 139-150.
[6] S.K. Karode, A. Kumar, Flow visualization through spacer filled channels by computational fluid dynamics I.: Pressure drop and shear rate calculations for flat sheet geometry, Journal of Membrane science, 193(1) (2001) 69-84.
[7] Y.-L. Li, K.-L. Tung, CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions, Journal of Desalination, 233(1-3) (2008) 351-358.
[8] M. Shakaib, S. Hasani, M. Mahmood, Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling, Journal of Membrane Science, 297(1-2) (2007) 74-89.
[9] F. Li, W. Meindersma, A. De Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, Journal of Membrane Science, 208(1-2) (2002) 289-302.
[10] Y.-L. Li, K.-L. Tung, M.-Y. Lu, S.-H. Huang, Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module, Journal of Membrane Science, 329(1-2) (2009) 106-118.
[11] C.P. Koutsou, A.J. Karabelas, A novel retentate spacer geometry for improved spiral wound membrane (SWM) module performance, Journal of Membrane Science, 488 (2015) 129-142.
[12] G. Srivathsan, Modeling of fluid flow in spiral wound reverse osmosis membranes, (2013).
[13] A.E. Anqi, N. Alkhamis, A. Oztekin, Computational study of desalination by reverse osmosis—Three-dimensional analyses, Journal of Desalination, 388 (2016) 38-49.
[14] B. Gu, C.S. Adjiman, X.Y. Xu, The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations, Journal of Membrane Science, 527 (2017) 78-91.
[15] M. Li, T. Bui, S. Chao, Three-dimensional CFD analysis of hydrodynamics and concentration polarization in an industrial RO feed channel, Journal of Desalination, 397 (2016) 194-204.
[16] S.S. Bucs, A.I. Radu, V. Lavric, J.S. Vrouwenvelder, C. Picioreanu, Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study, J Desalination, 343 (2014) 26-37.
[17] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P.K. Tucker, Surrogate-based analysis and optimization, Journal of Progress in aerospace sciences, 41(1) (2005) 1-28.
[18] S. Razavi, B.A. Tolson, D.H. Burn, Review of surrogate modeling in water resources, Journal of Water Resources Research, 48(7) (2012).
[19] G.E. Box, J.S. Hunter, Multi-factor experimental designs for exploring response surfaces, Journal of The Annals of Mathematical Statistics, 28(1) (1957) 195-241.
[20] S.A.I. Bellary, A. Husain, A. Samad, Effectiveness of meta-models for multi-objective optimization of centrifugal impeller, Journal of mechanical science technology, 28(12) (2014) 4947-4957.
[21] P. Sofotasiou, J.K. Calautit, B.R. Hughes, D. O'Connor, Towards an integrated computational method to determine internal spaces for optimum environmental conditions, Journal of Computers and Fluids, 127 (2016) 146-160.
[22] D.W. Solutions, FILMTEC™ Reverse Osmosis Membranes, Journal of Technical Manual, Form, (609-00071) (2010) 1-180.
[23] G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Journal of Desalination, 64 (1987) 339-352.
[24] A. Saeed, Effect of feed channel spacer geometry on hydrodynamics and mass transport in membrane modules, Curtin University, 2012.
[25] M. Li, Optimal plant operation of brackish water reverse osmosis (BWRO) desalination, Journal of Desalination, 293 (2012) 61-68.
[26] J. Vrouwenvelder, C. Hinrichs, W. Van der Meer, M. Van Loosdrecht, J. Kruithof, Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction, Journal of Biofouling, 25(6) (2009) 543-555.
[27] X. Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014), 77-87.
[28] O. Kuroda, S. Takahashi, M. Nomura, Characteristics of flow and mass transfer rate in an electrodialyzer compartment including spacer, Journal of Desalination, 46(1-3) (1983) 225-232.
[29] G. Van den Berg, I. Racz, C. Smolders, Mass transfer coefficients in cross-flow ultrafiltration, Journal of Membrane Science, 47(1-2) (1989) 25-51.