[1] M. Kıyan, E. Bingöl, M. Melikoğlu, A. Albostan, Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink, Energy Conversion and Management, 72 (2013) 147-155.
[2] E. Kondili, J. Kaldellis, Optimal design of geothermal–solar greenhouses for the minimisation of fossil fuel consumption, Applied Thermal Engineering, 26(8-9) (2006) 905-915.
[3] B.M. Ziapour, A. Hashtroudi, Performance study of an enhanced solar greenhouse combined with the phase change material using genetic algorithm optimization method, Applied Thermal Engineering, 110 (2017) 253-264.
[4] J. Zhang, J. Wang, S. Guo, B. Wei, X. He, J. Sun, S. Shu, Study on heat transfer characteristics of straw block wall in solar greenhouse, Energy and Buildings, 139 (2017) 91-100.
[5] K.A. Joudi, A.A. Farhan, Greenhouse heating by solar air heaters on the roof, Renewable energy, 72 (2014) 406-414.
[6] A. Vadiee, V. Martin, Energy analysis and thermoeconomic assessment of the closed greenhouse–The largest commercial solar building, Applied Energy, 102 (2013) 1256-1266.
[7] C. Chen, H. Ling, Z.J. Zhai, Y. Li, F. Yang, F. Han, S. Wei, Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses, Applied energy, 216 (2018) 602-612.
[8] H.H. Öztürk, Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating, Energy Conversion and Management, 46(9-10) (2005) 1523-1542.
[9] A. Hepbasli, A comparative investigation of various greenhouse heating options using exergy analysis method, Applied Energy, 88(12) (2011) 4411-4423.
[10] H. Yildizhan, M. Taki, Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey, Energy, 156 (2018) 401-408.
[11] H.G. Mobtaker, Y. Ajabshirchi, S.F. Ranjbar, M. Matloobi, Solar energy conservation in greenhouse: Thermal analysis and experimental validation, Renewable Energy, 96 (2016) 509-519.
[12] H.G. Mobtaker, et al., Investigation of north wall impact on energy consumption of east-west greenhouse, Agricultural machinery, 7(48) (2017) 350-363. In Persian.
[13] M.J. Gupta, P. Chandra, Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control, Energy, 27(8) (2002) 777-794.
[14] S. Zarifneshat, A. Rohani, H.R. Ghassemzadeh, M. Sadeghi, E. Ahmadi, M. Zarifneshat, Predictions of apple bruise volume using artificial neural network, Computers and electronics in agriculture, 82 (2012) 75-86.
[15] S.A. Bell, A beginner's guide to uncertainty of measurement, (2001).
[16] H. De Zwart, Analyzing energy-saving options in greenhouse cultivation using a simulation model, De Zwart, 1996.
[17] A. Defant, F. Defant, Physikalische Dynamik der Atmosphäre, Akad. Verl.-Ges., 1958.
[18] J. Stoffers, Tuinbouwtechnische aspecten van de druppelprofilering bij kasverwarmings-buis, Intern rapport IMAG_DLO, Wageningen, (1989).
[19] R. Van Ooteghem, Optimal control design for a solar greenhouse, systems and control, Wageningen: Wageningen University, (2007).
[20] G. Van Straten, G. van Willigenburg, E. van Henten, R. van Ooteghem, Optimal control of greenhouse cultivation, CRC press, 2010.
[21] C. Von Zabeltitz, Heating, in: Integrated Greenhouse Systems for Mild Climates, Springer, 2011, pp. 285-311.
[22] M. Glover, G. Reichert, Convective gas-flow inhibitors, in, Google Patents, 1994.
[23] T.C. Jester, Twentieth-century building materials: History and conservation, Getty Publications, 2014.
[24] K.A. Joudi, A.A. Farhan, A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse, Energy Conversion and Management, 91 (2015) 76-82.
[25] C. Stanghellini, Transpiration of greenhouse crops: an aid to climate management, IMAG, 1987.
[26] G.P. Bot, Greenhouse climate: from physical processes to a dynamic model, Landbouwhogeschool te Wageningen, 1983.
[27] T. De Jong, Natural ventilation of large multi-span greenhouses, De Jong, 1990.
[28] M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of engineering thermodynamics, John Wiley & Sons, 2010.
[29] F. Bronchart, M. De Paepe, J. Dewulf, E. Schrevens, P. Demeyer, Thermodynamics of greenhouse systems for the northern latitudes: Analysis, evaluation and prospects for primary energy saving, Journal of environmental management, 119 (2013) 121-133.
[30] D.E.R. Kenneth Wark, Thermodynamics McGraw-Hill series in mechanical engineering, ISBN-13: 978-0071168533 (1999) 954
[31] A. Bejan, G. Tsatsaronis, M. Moran, M.J. Moran, Thermal design and optimization, John Wiley & Sons, 1996.
[32] V. Sethi, S. Sharma, Experimental and economic study of a greenhouse thermal control system using aquifer water, Energy Conversion and Management, 48(1) (2007) 306-319.
[33] D.P. Lambe, S.A. Adams, E.T. Paparozzi, Estimating construction costs for a low-cost Quonset-style greenhouse, (2012).
[34] E. Indicators, Marshall&Swift equipment cost index, Chemical engineering, 68 (2011).
[35] P. Ahmadi, I. Dincer, Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant, Applied Thermal Engineering, 31(14-15) (2011) 2529-2540.
[36] E. Mashonjowa, F. Ronsse, J.R. Milford, J. Pieters, Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model, Solar Energy, 91 (2013) 381-393.
[37] P. Sharma, G. Tiwari, V. Sorayan, Temperature distribution in different zones of the micro-climate of a greenhouse: a dynamic model, Energy conversion and management, 40(3) (1999) 335-348.
[38] J. Du, P. Bansal, B. Huang, Simulation model of a greenhouse with a heat-pipe heating system, Applied energy, 93 (2012) 268-276.