Investigation of the mechanical properties of multilayer graphene helicoids with different geometric characteristics using molecular dynamics simulation

Document Type : Research Article

Authors

1 Department of Mechanical engineering, Emam Hossein university, Tehran, Iran.

2 Department of Mechanical Engineering, Tehran University, Iran

3 Department of Mechanical Engineering, Tehran University, Tehran, Iran

Abstract

Graphene helicoid is a man-made spiral structure that has recently been created with the advent of nanotechnology inspired by nature. In this study, the mechanical properties of multi-layer graphene helicoid with different geometric characteristics are studied using molecular dynamics simulation and the relationship between several layers, geometric properties, and mechanical properties of nanoparticles are investigated. The results show that the unique geometric properties of these nanoparticles produce interesting mechanical properties that are highly dependent on their structure. The stages of the tensile behavior of these nanoparticles are altered by increasing the number of layers corresponding to the geometric characteristics of the nanoparticles. One of the most important characteristics of these nanoparticles is their high stretchability, even for some specimens, up to 3000%, which, with the addition of a layer to their structure, decreases sharply. The results also indicate a strong increase in force in the small strain range with the onset of the stretching process due to the strong Van der Waals forces between the adjacent layers. The spring constant for these nanoparticles is calculated in this initial area of the tensile test and, decreases with the addition of the layers. Identifying the properties of multilayered graphene helicoid can lead to an increase in their efficiency and their optimal performance in nanoscale devices and even improve multiscale performance.

Keywords

Main Subjects


[1] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, AA, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438(7065) (2005) 197.
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(5696) (2004) 666-669.
[3] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348) (1991) 56.
[4] M.M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem., 80(3) (2008) 519-532.
[5] Q. Peng, W. Ji, S. De, Mechanical properties of graphyne monolayers: a first-principles study, PCCP, 14(38) (2012) 13385-13391.
[6] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10(8) (2011) 569-581.
[7] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(3) (2008) 902-907.
[8] J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets, Science, 315(5811) (2007) 490-493.
[9] Y.-W. Son, Y.-W. Son, ML Cohen, and SG Louie, Nature (London) 444, 347 (2006), Nature (London), 444 (2006) 347.
[10] N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 448(7153) (2007) 571.
[11] L. Zhang, S. Zaric, X. Tu, X. Wang, W. Zhao, H. Dai, Assessment of chemically separated carbon nanotubes for nanoelectronics, J. Am. Chem. Soc., 130(8) (2008) 2686-2691.
[12] O.Y. Loh, H.D. Espinosa, Nanoelectromechanical contact switches, Nature nanotechnology, 7(5) (2012) 283.
[13] Y. Rémond, S. Ahzi, M. Baniassadi, H. Garmestani, Applied RVE reconstruction and homogenization of heterogeneous materials, John Wiley & Sons, 2016.
[14] M. Mahdavi, E. Yousefi, M. Baniassadi, M. Karimpour, M. Baghani, Effective thermal and mechanical properties of short carbon fiber/natural rubber composites as a function of mechanical loading, Appl. Therm. Eng., 117 (2017) 8-16.
[15] D. Boukhvalov, M. Katsnelson, Chemical functionalization of graphene with defects, Nano Lett., 8(12) (2008) 4373-4379.
[16] O.C. Compton, S.W. Cranford, K.W. Putz, Z. An, L.C. Brinson, M.J. Buehler, S.T. Nguyen, Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding, ACS nano, 6(3) (2012) 2008-2019.
[17] Q.-X. Pei, Y.-W. Zhang, V.B. Shenoy, Mechanical properties of methyl functionalized graphene: a molecular dynamics study, Nanotechnology, 21(11) (2010) 115709.
[18] F. OuYang, B. Huang, Z. Li, J. Xiao, H. Wang, H. Xu, Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects, J. Phys. Chem. C, 112(31) (2008) 12003-12007.
[19] Z. Zabihi, H. Araghi, Effective thermal conductivity of carbon nanostructure based polyethylene nanocomposite: Influence of defected, doped, and hybrid filler, International Journal of Thermal Sciences, 120 (2017) 185-189.
[20] R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen-doped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Power Sources, 195(24) (2010) 8080-8083.
[21] K. Kim, H.J. Park, B.-C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Electric property evolution of structurally defected multilayer graphene, Nano Lett., 8(10) (2008) 3092-3096.
[22] G. Wang, X. Li, Y. Wang, Z. Zheng, Z. Dai, X. Qi, L. Liu, Z. Cheng, Z. Xu, P. Tan, Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene, J. Phys. Chem. C, 121(46) (2017) 26034-26043.
[23] X. Zhang, S. Liu, H. Liu, J. Zhang, X. Yang, Molecular dynamics simulation of the mechanical properties of multilayer graphene oxide nanosheets, RSC Advances, 7(87) (2017) 55005-55011.
[24] X. Zhang, X. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, V. Ivanov, J. Nagy, P. Lambin, A. Lucas, The texture of catalytically grown coil-shaped carbon nanotubules, EPL (Europhysics Letters), 27(2) (1994) 141.
[25] C. Chuang, Y.-C. Fan, B.-Y. Jin, Generalized classification scheme of toroidal and helical carbon nanotubes, J. Chem. Inf. Model., 49(2) (2009) 361-368.
[26] P. Chen, Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, H. Peng, Hierarchically arranged helical fibre actuators driven by solvents and vapours, Nature Nanotechnology, 10 (2015) 1077.
[27] J. Wu, J. He, G.M. Odegard, S. Nagao, Q. Zheng, Z. Zhang, Giant stretchability and reversibility of tightly wound helical carbon nanotubes, J. Am. Chem. Soc., 135(37) (2013) 13775-13785.
[28] A. Sharifian, M. Baghani, J. Wu, G.M. Odegard, M. Baniassadi, Insight into Geometry-Controlled Mechanical Properties of Spiral Carbon-Based Nanostructures, J. Phys. Chem. C, 123(5) (2019) 3226-3238.
[29] C. Chuang, Y.-C. Fan, B.-Y. Jin, Dual space approach to the classification of toroidal carbon nanotubes, J. Chem. Inf. Model., 49(7) (2009) 1679-1686.
[30] E. Yousefi, M. Mahdavi, M. Baniassadi, Investigating mechanical properties of coiled carbon nanotube reinforced nanocomposite.
[31] F. Xu, H. Yu, A. Sadrzadeh, B.I. Yakobson, Riemann surfaces of carbon as graphene nanosolenoids, Nano Lett., 16(1) (2015) 34-39.
[32] M. Daigle, D. Miao, A. Lucotti, M. Tommasini, J.F. Morin, Helically coiled graphene nanoribbons, Angew. Chem., 129(22) (2017) 6309-6313.
[33] S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science, 265(5172) (1994) 635-639.
[34] H. Zhan, G. Zhang, C. Yang, Y. Gu, Graphene Helicoid: Distinct Properties Promote Application of Graphene Related Materials in Thermal Management, J. Phys. Chem. C, 122(14) (2018) 7605-7612.
[35] P. Šesták, J. Wu, J. He, J. Pokluda, Z. Zhang, Extraordinary deformation capacity of smallest carbohelicene springs, PCCP, 17(28) (2015) 18684-18690.
[36] H. Zhan, Y. Zhang, C. Yang, G. Zhang, Y. Gu, Graphene helicoid as novel nanospring, Carbon, 120 (2017) 258-264.
[37] H. Zhan, G. Zhang, C. Yang, Y. Gu, Breakdown of Hooke's law at the nanoscale–2D material-based nanosprings, Nanoscale, 10(40) (2018) 18961-18968.
[38] S. Norouzi, M.M.S. Fakhrabadi, Nanomechanical properties of single-and double-layer graphene spirals: a molecular dynamics simulation, Appl. Phys. A, 125(5) (2019) 321.
[39] A. Sharifian, A. Moshfegh, A. Javadzadegan, H.H. Afrouzi, M. Baghani, M. Baniassadi, Hydrogenation-Controlled Mechanical Properties in Graphene Helicoids: Exceptionally Distribution-Dependent Behavior, PCCP, 21(23) (2019) 12423-12433.
[40] S.M. Avdoshenko, P. Koskinen, H. Sevinçli, A.A. Popov, C.G. Rocha, Topological signatures in the electronic structure of graphene spirals, Sci. Rep., 3 (2013) 1632.
[41] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112(14) (2000) 6472-6486.
[42] O. Shenderova, D. Brenner, A. Omeltchenko, X. Su, L. Yang, Atomistic modeling of the fracture of polycrystalline diamond, Phys. Rev. B, 61(6) (2000) 3877.
[43] J. Wu, S. Nagao, J. He, Z. Zhang, Nanohinge‐Induced Plasticity of Helical Carbon Nanotubes, Small, 9(21) (2013) 3561-3566.
[44] J. Wu, Q. Shi, Z. Zhang, H.-H. Wu, C. Wang, F. Ning, S. Xiao, J. He, Z. Zhang, Nature-inspired Entwined Coiled Carbon Mechanical Metamaterials: Molecular Dynamics Simulations, Nanoscale, 10(33) (2018) 15641-15653.
[45] J. Wu, H. Zhao, J. Liu, Z. Zhang, F. Ning, Y. Liu, Nanotube-chirality-controlled tensile characteristics in coiled carbon metastructures, Carbon, 133 (2018) 335-349.
[46] A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 131(15) (2009) 154107.
[47] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 14(1) (1996) 33-38.