[1] V.K. Varadan, L. Chen, J. Xie, Nanomedicine: design and applications of magnetic nanomaterials, nanosensors and nanosystems, John Wiley & Sons, 2008.
[2] H. Fan, S. Qin, A piezoelectric sensor embedded in a non-piezoelectric matrix, International Journal of Engineering Science, 33(3) (1995) 379-388.
[3] A. Rasooly, K.E. Herold, K.E. Herold, Biosensors and biodetection, Springer, 2009.
[4] L. Yu, G. Bottai-Santoni, V. Giurgiutiu, Shear lag solution for tuning ultrasonic piezoelectric wafer active sensors with applications to Lamb wave array imaging, International Journal of Engineering Science, 48(10) (2010) 848-861.
[5] N.V. Lavrik, M.J. Sepaniak, P.G. Datskos, Cantilever transducers as a platform for chemical and biological sensors, Review of Scientific Instruments, 75(7) (2004) 2229-2253.
[6] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, 54(9) (1983) 4703-4710.
[7] M. Zarepour, S.A.H. Hosseini, A.H. Akbarzadeh, Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model, Applied Mathematical Modelling, 69 (2019) 563-582.
[8] O. Rahmani, S. Deyhim, S. Hosseini, A. Hossein, Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory, STEEL AND COMPOSITE STRUCTURES, 27(3) (2018) 371-388.
[9] O. Rahmani, M. Shokrnia, H. Golmohammadi, S. Hosseini, Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory, The European Physical Journal Plus, 133(2) (2018) 42.
[10] M. Ghadiri, S. Hosseini, M. Karami, M. Namvar, In-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity, Journal of Solid Mechanics Vol, 10(2) (2018) 285-299.
[11] M. Zarepour, S.A. Hosseini, M. Ghadiri, Free vibration investigation of nano mass sensor using differential transformation method, Appl. Phys. A, 123(3) (2017) 181.
[12] O. Rahmani, S. Norouzi, H. Golmohammadi, S. Hosseini, Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects, Mechanics of Advanced Materials and Structures, 24(15) (2017) 1274-1291.
[13] R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11(1) (1962) 415-448.
[14] D.C. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8) (2003) 1477-1508.
[15] R.A. Toupin, Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis, 17(2) (1964) 85-112.
[16] F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[17] J.W. Lee, J.Y. Lee, Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression, International Journal of Mechanical Sciences, 122 (2017) 1-17.
[18] F. Ebrahimi, M.R. Barati, Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams, Mechanical Systems and Signal Processing, 93 (2017) 445-459.
[19] X. Li, L. Li, Y. Hu, Z. Ding, W. Deng, Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Composite Structures, 165 (2017) 250-265.
[20] Z. Lv, H. Liu, Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment, Composite Structures, 184 (2018) 1165-1176.
[21] H. Liu, H. Liu, J. Yang, Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation, Composites Part B: Engineering, 155 (2018) 244-256.
[22] D. Cao, Y. Gao, M. Yao, W. Zhang, Free vibration of axially functionally graded beams using the asymptotic development method, Engineering Structures, 173 (2018) 442-448.
[23] Z. Lv, Z. Qiu, J. Zhu, B. Zhu, W. Yang, Nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium, Composite Structures, 202 (2018) 675-685.
[24] A. Aria, M. Friswell, A nonlocal finite element model for buckling and vibration of functionally graded nanobeams, Composites Part B: Engineering, 166 (2019) 233-246.
[25] M. Trabelssi, S. El-Borgi, R. Fernandes, L.-L. Ke, Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation, Composites Part B: Engineering, 157 (2019) 331-349.
[26] A.I. Aria, T. Rabczuk, M.I. Friswell, A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams, European Journal of Mechanics-A/Solids, (2019).
[27] H.B. Khaniki, On vibrations of FG nanobeams, International Journal of Engineering Science, 135 (2019) 23-36.
[28] H. Liu, Z. Lv, H. Wu, Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory, Composite Structures, 214 (2019) 47-61.
[29] M. Ghadiri, A. Jafari, A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution, Journal of Solid Mechanics Vol, 10(1) (2018) 23-37.
[30] T. Aksencer, M. Aydogdu, Vibration of a rotating composite beam with an attached point mass, Composite Structures, 190 (2018) 1-9.
[31] C. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78 (2015) 298-313.
[32] S.S. Rao, Mechanical Vibrations Laboratory Manual, Year, Edition Addison-Wesley Publishing Company, 1995.
[33] G. Lütjering, J.C. Williams, Titanium, Springer Science & Business Media, 2007.
[34] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45(2) (2007) 288-307.