[1] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holberg, A. Casal, A. Baader, Force strategies for cooperative tasks in multiple mobile manipulation systems, Robotics Research 148(2) (1996) 333-342.
[2] K. Thanjavur, R. Rajagopalan, Ease of dynamic modeling of wheeled mobile robots (WMRs) using Kane's approach, International Conference on Robotics and Automation, Albuquerque, New Mexico: IEEE, (1997) 2926-2931.
[3] H. G. Tanner, K.J. Kyriakopouos, Mobile manipulator modeling with Kane's approach, Robotica, 19(6) (2001) 675-690.
[4] M. H. Korayem, R. A. Esfeden, S. R. Nekoo, Path planning algorithm in wheeled mobile manipulators based on motion of arms, Journal of Mechanical Science and Technology, 29(4)(2015) 1753-1763.
[5] M. H. Korayem, S. R. Nekoo, The SDRE control of mobile base cooperative manipulators: Collision free path planning and moving obstacle avoidance, Robotics and Autonomous Systems, 86 (2016) 86-105.
[6] A. H. Korayem, S. R. Nekoo, M. H. Korayem, Optimal sliding mode control design based on the state-dependent Riccati equation for cooperative manipulators to increase dynamic load carrying capacity, Robotica, 37(2) (2019) 321-337.
[7] Q. Yu, I. M. Chen, A general approach to the dynamics of nonholonomic mobile manipulator systems, Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, 124 (4) (2002) 512-521.
[8] M. Vukobratovic, V. Potkonjak, Applied dynamics and CAD of manipulation robots, Springer-Verlag, Berlin, (1985).
[9] A. F. Vereshchagin, Computer simulation of the dynamics of complicated mechanisms of robot-manipulators, Engineering Cybernetics, 12(6) (1974) 65-70.
[10] I. J. Rudas, A. Toth, Efficient recursive algorithm for inverse dynamics, Mechatronics, 3(2) (1993) 205-214.
[11] V. Mata, S. Provenzano, J. I. Cuadrado, F. Valero, Inverse Dynamic Problem in Robots using Gibbs-Appell Equations, Robotica, 20(1) (2002) 59-67.
[12] S. Provenzano, V. Mata, M. Ceccarelli, J. L. Suner, An algorithm for solving the inverse dynamic problem in robots by using the Gibbs–Appell formulation, Robotica 21(1) (2002) 138-145.
[13] V. Mata, S. Provenzano, J. I. Cuadrado, F. Valero, Efficient Computation of the generalized inertial tensor of robots by using the Gibbs–Appell equations, Robotica, 21(1) (2002) 739-755.
[14] A. M. Shafei, H. R. Shafei, Planar multibranch open-loop robotic manipulators subjected to ground collision, Journal of Computational and Nonlinear Dynamics, Transactions of the ASME, 12(6) (2017)1-14.
[15] M. H. Korayem, A. M. Shafei, F. Absalan, B. Kadkhodaei, A. Azimi, Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment, International Journal of Advanced Manufacturing Technology, 71 (5-8) (2014) 1005-1018.
[16] A. M. Shafei, H. R. Shafei, Dynamic modeling of tree-type robotic systems by combining 3×3 rotation matrices and 4×4 transformation ones, Multibody System Dynamics, 44(4) (2018) 367-395.
[17] A. M. Shafei, H. R. Shafei, Dynamic behavior of flexible multiple links captured inside a closed space, Journal of Computational and Nonlinear Dynamics, Transactions of the ASME, 11(5) (2016) 1-13.
[18] M. H. Korayem, A. M. Shafei, S. F. Dehkordi, Systematic modeling of a chain of N-flexible link manipulators connected by revolute-prismatic joints using recursive Gibbs-Appell formulation, Archive of Applied Mechanics, 84 (2) (2014) 187-206.
[19] A. M. Shafei, H. R. Shafei, Dynamic modeling of planar closed-chain robotic manipulators in flight and impact phases, Mechanism and Machine Theory, 126 (2018) 141-154.
[20] A. M. Shafei, H. R. Shafei, A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment, Multibody System Dynamics, 38(1) (2016) 21-42.
[21] M. H. Korayem, A. M. Shafei, Application of recursive Gibbs-Appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko beam theory, Acta Astronautica, 83 (2013) 273-294.
[22] V. Rezaei, A. M. Shafei, Dynamic analysis of flexible robotic manipulators constructed of functionally graded materials, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(1) (2019) 327–342.
[23] M. H. Korayem, A. M. Shafei, M. Doosthoseini, F. Absalan, B. Kadkhodaei, Theoretical and experimental investigation of viscoelastic serial robotic manipulators with motors at the joints using Timoshenko beam theory and Gibbs–Appell formulation, Proc IMechE Part K: J Multi-body Dynamics, 230 (1) (2016) 37-51.
[24] A. M. Shafei, H. R. Shafei, Considering link flexibility in the dynamic synthesis of closed-loop mechanisms: A general approach, Journal of Vibration and Acoustics, Transactions of the ASME, 142(2) (2020) 1-12.
[25] M. Ahmadizadeh, A. M. Shafei, M. Fooladi, A recursive algorithm for dynamics of multiple frictionless impact-contacts in open-loop robotic mechanisms, Mechanism and Machine Theory, 146 (2020) 1-20.
[26] A. M. Shafei, H. R. Shafei, Oblique Impact of Multi-Flexible-Link Systems, Journal of Vibration and Control, 24(5) (2018) 904-923.
[27] A. M. Shafei, M. H. Korayem, Theoretical and experimental study of DLCC for flexible robotic arms in point-to-point motion, Optimal Control Applications and Methods, 38(6) (2017) 963-972.
[28] M. H. Korayem, A. M. Shafei, Motion equation of nonholonomic wheeled mobile robotic manipulator with revolute-prismatic joints using recursive Gibbs-Appell formulation, Applied Mathematical Modeling, 39(5) (2015) 1701-1716.
[29] M. H. Korayem, A. M. Shafei,A New Approach for Dynamic Modeling of n-Viscoelastic-link Robotic Manipulators Mounted on a Mobile Base, Nonlinear Dynamics, 79(4) (2015) 2767-2786.
[30] M. H. Korayem, A. M. Shafei, E. Seidi, Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees, Computers and Electronics in Agriculture, 105 (2014) 95-102.
[31] M. H. Korayem, A. M. Shafei, H. R. Shafei, Dynamic modeling of nonholonomic wheeled mobile manipulators with elastic joints using recursive Gibbs-Appell formulation, Scientia Iranica Transaction b: Mechanical engineering, 19(4) (2012) 1092-1104.
[32] R. W. Brockett, Asymptotic stability and feedback stabilization, R. W. Brockett, R. S. Millman, H. J. Sussmann, Differential Geometric Control Theory, Boston, MA: Birkhuser, (1983)181-191.
[33] G. D. White, R. M. Bhatt, C. P. Tang, V. N. Krovi, Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator, IEEE/ASME Transactions on Mechatronics, 14(3) (2009) 349-357, 2009.
[34] S. Yi, J. Zhai, Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators, ISA Transactions, 90 (2019), 41-51.
[35] M. Boukens, A. Boukabou, M. Chadli, Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots, Robotics and Autonomous Systems, 92 (2017) 30-40.
[36] S. G. Tzafestas, K. M. Deliparaschos, G. P. Moustris, Fuzzy logic path tracking control for autonomous non-holonomic mobile robots: Design of System on a Chip, Robotics and Autonomous Systems, 58(8) (2010) 1017-1027.
[37] L. Xin, Q. Wang, J. She, Y. Li, Robust adaptive tracking control of wheeled mobile robot, Robotics and Autonomous Systems, 78 (2016) 36-48.
[38] G. Yi, J. Mao, Y. Wang, S. Guo, Z. Miao, Adaptive tracking control of nonholonomic mobile manipulators using recurrent neural networks, International Journal of Control, Automation and Systems, 16(3) (2018) 1390-1403.
[39] A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour, B. Bouzouia, Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control, Robotics and Autonomous Systems, 89 (2017) 95-109.
[40] Z. Li, Y. Kang, Dynamic coupling switching control incorporating support vector machines for wheeled mobile manipulators with hybrid joints, Automatica, 46(5) (2010) 832-842.
[41] M. Boukattaya, M. Jallouli, T. Damak, On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances, Robotics and autonomous systems, 60(12) (2012) 1640-1647.
[42] N. Chen, F. Song, G. Li, X. Sun, C. Ai, An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints, Communications in Nonlinear Science and Numerical Simulation, 18(10) (2013) 2885-2899.
[43] J. Peng, J. Yu, J. Wang, Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties, ISA Transactions, 53(4) (2014) 1035-1043.
[44] H. Mirzaeinejad, A. M. shafei, Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches, Robotica, 36(10) (2018) 1551-1570.
[45] J. R. Forbes, Adaptive approaches to nonlinear state estimation for mobile robot localization: an experimental comparison ,Transactions of the Institute of Measurement and Control, 35 (2013) 971-985.
[46] B. Zhou,Y. Peng, J. Han, UKF based estimation and tracking control of nonholonomic mobile robots with slipping, IEEE International Conference on Robotics and Biomimetics, Sanya, China, (2007) 2058–2063.
[47] D. Simon,Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, Hoboken, NY: Wiley-Interscience, (2006).
[48] J. J. E. Slotine, W. Li,Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, N J, (1991).
[49] M. Mirzaei, H. Mirzaeinejad,Fuzzy Scheduled Optimal Control of Integrated Vehicle Braking and Steering Systems, IEEE/ASME Transactions on Mechatronics, 22 (2017) 2369-2379.
[50] H. Mirzaeinejad, M. Mirzaei, R. Kazemi, Enhancement of vehicle braking performance on split-k roads using optimal integrated control of steering and braking systems, Proceedings of the Institution of Mechanical Engineers, Part K: J Multi-body Dynamics, 230 (2016) 401-415.
[51] H. Mirzaeinejad , M. Mirzaei, S. Rafatnia, A novel technique for optimal integration of active steering and differential braking with estimation to improve vehicle directional stability, ISA Transactions, 80 (2018) 513-527.
[52] M. Jafari, M. Mirzaei, and H. Mirzaeinejad, Optimal nonlinear control of vehicle braking torques to generate practical stabilizing yaw moments, International Journal of Automotive and Mechanical Engineering, 11 (2015) 2639.
[53] W. H. Chen, D. J. Balance, P. J. Gawthrop, Optimal control of nonlinear systems: A predictive control approach, Automatica, 39 (2013) 633–641.
[54] H. Mirzaeinejad, Optimization-based nonlinear control laws with increased robustness for trajectory tracking of non-holonomic wheeled mobile robots, Journal of Transportation Research Part C, 101 (2019) 1-17.
[55] H. Mirzaeinejad, Robust predictive control of wheel slip in antilock braking systems based on radial basis function neural network, Applied Soft Computing, 70 (2018) 318-329.