[1] J.S. Butel, Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease, Carcinogenesis, 21(3) (2000) 405-426.
[2] A.H. Choi, M.P. O’Leary, Y. Fong, N.G. Chen, From benchtop to bedside: a review of oncolytic virotherapy, Biomedicines, 4(3) (2016) 18.
[3] W. Pan, V. Bodempudi, T. Esfandyari, F. Farassati, Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1, PLoS One, 4(8) (2009) e6514.
[4] Sivanandam, Venkatesh, Christopher J LaRocca, Nanhai G Chen, Yuman Fong, and Susanne G Warner. "Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Molecular therapy oncolytics 13 (2019): 93.
[5] Sivanandam, Venkatesh, Christopher J LaRocca, Nanhai G Chen, Yuman Fong, and Susanne G Warner. "Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Molecular therapy oncolytics 13 (2019): 93.
[6] D. Dingli, M.D. Cascino, K. Josić, S.J. Russell, Ž. Bajzer, Mathematical modeling of cancer radiovirotherapy, Mathematical biosciences, 199(1) (2006) 55-78.
[7] D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission, Cancer research, 61(8) (2001) 3501-3507.
[8] J. Li, K. Wang, Y. Yang, Dynamical behaviors of an HBV infection model with logistic hepatocyte growth, mathematical and computer modelling, 54(1-2) (2011) 704-711.
[9] Ž. Bajzer, T. Carr, K. Josić, S.J. Russell, D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, Journal of theoretical Biology, 252(1) (2008) 109-122.
[10] B. Mukhopadhyay, R. Bhattacharyya, A nonlinear mathematical model of virus-tumor-immune system interaction: deterministic and stochastic analysis, Stochastic Analysis and Applications, 27(2) (2009) 409-429.
[11] J.E. Mittler, B. Sulzer, A.U. Neumann, A.S. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Mathematical biosciences, 152(2) (1998) 143-163.
[12] T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, Y. Xu, An intracellular delay-differential equation model of the HIV infection and immune control, Mathematical Modelling of Natural Phenomena, 2(1) (2007) 84-112.
[13] S.A. Gourley, Y. Kuang, J.D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics, 2(2) (2008) 140-153.
[14] Y. Wang, J.P. Tian, J. Wei, Lytic cycle: a defining process in oncolytic virotherapy, Applied Mathematical Modelling, 37(8) (2013) 5962-5978.
[15] S. Wang, S. Wang, X. Song, Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control, Nonlinear Dynamics, 67(1) (2012) 629-640.
[16]K.S. Kim, S. Kim, I.H. Jung, Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics, Mathematics and Computers in Simulation (2018).
[17]Wang, Zizi, Zhiming Guo, and Hal Smith. "A Mathematical Model of Oncolytic Virotherapy with Time Delay." (2019).
[18]Nouni, Ayoub, Khalid Hattaf, and Noura Yousfi. "Dynamics of a Mathematical Model for Cancer Therapy with Oncolytic Viruses. Commun. Math. Biol. Neurosci. 2019 (2019): Article ID 12.
[19] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE transactions on systems, man, and cybernetics, (1) (1985) 116-132.
[20]X. Shi, X. Zhou, X. Song, Dynamical behavior of a delay virus dynamics model with CTL immune response, Nonlinear Analysis: Real World Applications, 11(3) (2010) 1795-1809.
[21] A.R. Hall, B.R. Dix, S.J. O'Carroll, A.W. Braithwaite, p53-dependent cell death/apoptosis is required for a productive adenovirus infection, Nature medicine, 4(9) (1998) 1068.
[22] J.N. Harada, A.J. Berk, p53-Independent and-dependent requirements for E1B-55K in adenovirus type 5 replication, Journal of virology, 73(7) (1999) 5333-5344.
[23]B.R. Dix, S.J. O’Carroll, C.J. Myers, S.J. Edwards, A.W. Braithwaite, Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53, Cancer research, 60(10) (2000) 2666-2672.
[24] K.S. Kim, S. Kim, I.H. Jung, Dynamics of tumor virotherapy: A deterministic and stochastic model approach, Stochastic Analysis and Applications, 34(3) (2016) 483-495.
[25] K. Tanaka, H.O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach, John Wiley & Sons, 2004.
[26] T. Todo, R.L. Martuza, M.J. Dallman, S.D. Rabkin, In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity, Cancer research, 61(1) (2001) 153-161.