کنترل تعقیب مسیر کوادروتورها در حضور موانع بر مبنای روش میدان پتانسیل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

در این مقاله، با معرفی یک کنترلر ترکیبی مقاوم به همراه یک واحد اجتناب از موانع مبتنی بر توابع پتانسیل به کنترل تعقیب مسیر کوادروتور در حضور موانع پرداخته شده است. کوادروتورها، سیستم‌هایی کم‌‌عملگر بوده و طراحی کنترلر تعقیب مسیر مقاوم برای آن‌‌ها به یکی از پرچالش‌‌ترین مباحث در پژوهش‌‌های اخیر تبدیل شده است. در ابتدا مدلسازی دینامیکی کوادروتور با استفاده از روش نیوتن-اویلر و با در نظر گرفتن تمامی ترم‌‌های غیرخطی آن در نظر گرفته شده و در ادامه، فضای حالت سیستم به دست آمده است. سپس یک روش کنترلی با الهام از الگوریتم‌‌های کنترل خطی برای کنترل حلقه‌‌ی بیرونی طراحی شده و برای کنترل حلقه‌‌ی داخلی کنترلر، روش کنترلی پسگام ارائه شده است. ترکیب این دو روش کنترلی به نحوی صورت گرفته که سیستم بهترین عملکرد را در تعقیب مسیرهای دلخواه از نظر همگرایی به مسیر مرجع حرکت، خطای حالت ماندگار کمینه و دیگر مشخصات پاسخ گذرای سیستم داشته باشد. در ادامه یک واحد اجتناب از موانع مبتنی بر توابع پتانسیل طراحی شده که با ایجاد نیروی دافعه بین سیستم و موانع از تصادم کوادروتور جلوگیری می‌‌کند. در انتها دو آزمایش ردیابی مسیر دایره‌‌ای و زینی شکل برای یک کوادروتور در حضور موانع در نظر گرفته شده است و نتایج حاصله، عملکرد مقاوم کنترلر را در تعقیب مسیرها و اجتناب از موانع نشان می‌‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Tracking control of quadrotors in the presence of obstacles based on potential field method

نویسندگان [English]

  • Ali Keymasi Khalaji
  • iman saadat
Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده [English]

In this paper, by introducing a robust hybrid controller using an obstacle avoidance unit based on potential functions, the trajectory tracking control of quadrotors in the presence of obstacles is discussed. Quadrotors are underactuated systems and the design of a robust tracking controller has become one of the most challenging topics in recent researches. First, dynamic modeling of a quadrotor is considered using the Newton-Euler method by considering the nonlinear terms. In the following, the system state space is represented. Then, a control method based on linear control algorithms is designed to control the outer loop and for the inner loop of the controller, the backstepping method is presented. The combination of the control methods is designed to obtain the best performance of the system in terms of convergence to the reference path, minimum steady-state errors, and transient response specifications of the system. In the following, an obstacle avoidance unit based on potential functions is designed to prevent the collision of the quadrotor with obstacles by creating a repulsive force between the system and the obstacles. Finally, trajectory tracking case studies are considered for a quadrotor in the presence of obstacles. Obtained results show the robust performance of the controller in tracking the trajectories and avoiding obstacles.

کلیدواژه‌ها [English]

  • Quadrotor
  • backstepping control method
  • obstacle avoidance unit
  • Potential Function
  • trajectory tracking control
[1] R. Mebarki, V. Lippiello, B. Siciliano, Exploiting image moments for aerial manipulation control, in:  ASME 2013 Dynamic Systems and Control Conference, American Society of Mechanical Engineers, 2013.
[2] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, R. Siegwart, A UAV system for inspection of industrial facilities, IEEE Aerospace Conference,  (2013).
[3] G. Caprari, A. Breitenmoser, W. Fischer, C. Hürzeler, F. Tâche, R. Siegwart, O. Nguyen, R. Moser, P. Schoeneich, F. Mondada, Highly compact robots for inspection of power plants, Journal of Field Robotics,  (2012) 47-68.
[4] F. Rinaudo, F. Chiabrando, A. Lingua, A. Spano, Archaeological site monitoring: UAV photogrammetry can be an answer, International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, 39(B5) (2012) 583-588.
[5] H. Menouar, I. Guvenc, K. Akkaya, A.S. Uluagac, A. Kadri, A. Tuncer, UAV-enabled intelligent transportation systems for the smart city: Applications and challenges, IEEE Communications Magazine, 55(3) (2017) 22-28.
[6] V. Lippiello, F. Ruggiero, Cartesian impedance control of a UAV with a robotic arm, IFAC Proceedings Volumes, 45(22) (2012) 704-709.
[7] M. Fanni, A. Khalifa, A New 6-DOF Quadrotor Manipulation System: Design, Kinematics, Dynamics and Control, IEEE/ASME Transactions on Mechatronics,  (2017).
[8] F.A. Goodarzi, D. Lee, T. Lee, Geometric control of a quadrotor UAV transporting a payload connected via flexible cable, International Journal of Control, Automation and Systems, 13(6) (2015) 1486-1498.
[9] D. Mellinger, Q. Lindsey, M. Shomin, V. Kumar, Design, modeling, estimation and control for aerial grasping and manipulation, in:  Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, IEEE, 2011, pp. 2668-2673.
[10] P.E. Pounds, D.R. Bersak, A.M. Dollar, Grasping from the air: Hovering capture and load stability, in:  Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE, 2011, pp. 2491-2498.
[11] J. Lee, I. Kaminer, V. Dobrokhodov, K. Jones, Autonomous feature following for visual surveillance using a small unmanned aerial vehicle with gimbaled camera system, International Journal of Control, Automation and Systems, 8(5) (2010) 957-966.
[12] A. Al-Kaff, Á. Madridano, S. Campos, F. García, D. Martín, A. de la Escalera, Emergency Support Unmanned Aerial Vehicle for Forest Fire Surveillance, Electronics, 9(2) (2020) 260.
[13] E. Guisado-Pintado, D.W. Jackson, D. Rogers, 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone, Geomorphology, 328 (2019) 157-172.
[14] A. Cavoukian, Privacy and drones: Unmanned aerial vehicles, Information and Privacy Commissioner of Ontario, Canada Ontario, (2012).
[15] P. Pounds, R. Mahony, P. Corke, Modelling and control of a large quadrotor robot, Control Engineering Practice, 18(7) (2010) 691-699.
[16] A. Kushleyev, D. Mellinger, C. Powers, V. Kumar, Towards a swarm of agile micro quadrotors, Autonomous Robots, 35(4) (2013) 287-300.
[17] A. Albers, S. Trautmann, T. Howard, T.A. Nguyen, M. Frietsch, C. Sauter, Semi-autonomous flying robot for physical interaction with environment, in:  Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference on, IEEE, 2010, pp. 441-446.
[18] R.C. Sá, G.A. Barreto, A.L.C. de Araújo, A.T. Varela, Design and construction of a quadrotor-type unmanned aerial vehicle: Preliminary results, in:  Engineering Applications (WEA), 2012 Workshop on, IEEE, 2012, pp. 1-6.
[19] G.M. Hoffmann, H. Huang, S.L. Waslander, C.J. Tomlin, Precision flight control for a multi-vehicle quadrotor helicopter testbed, Control engineering practice, 19(9) (2011) 1023-1036.
[20] B. Tian, L. Liu, H. Lu, Z. Zuo, Q. Zong, Y. Zhang, Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation, IEEE Transactions on Industrial Electronics, 65(3) (2018) 2567-2577.
[21] G.V. Raffo, M.G. Ortega, F.R. Rubio, An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter, Automatica, 46(1) (2010) 29-39.
[22] A. Ailon, S. Arogeti, Closed-form nonlinear tracking controllers for quadrotors with model and input generator uncertainties, Automatica, 54 (2015) 317-324.
[23] E. Stingu, F. Lewis, Design and implementation of a structured flight controller for a 6dof quadrotor using quaternions, in:  Control and Automation, 2009. MED'09. 17th Mediterranean Conference on, IEEE, 2009, pp. 1233-1238.
[24] R. Mahony, V. Kumar, P. Corke, Multirotor aerial vehicles, IEEE Robotics and Automation magazine, 20(32) (2012).
[25] Y. Sun, Modeling, identification and control of a quad-rotor drone using low-resolution sensing,  (2012).
[26] R.F. Afhami, Rasul Fesharakifard; Azam Khosravi, Mohammad, Updating LQR control for full dynamic of a quadrotor, Department of Electrical Engineering,  (2017).
[27] C. Liu, J. Pan, Y. Chang, PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: Experimental studies, in:  2016 35th Chinese Control Conference (CCC), 2016, pp. 10845-10850.
[28] M.-D. Hua, T. Hamel, P. Morin, C. Samson, Introduction to feedback control of underactuated VTOLvehicles: A review of basic control design ideas and principles, IEEE Control Systems, 33(1) (2013) 61-75.
[29] P. Castillo, R. Lozano, A. Dzul, Stabilization of a mini rotorcraft with four rotors, IEEE control systems, 25(6) (2005) 45-55.
[30] G. Antonelli, E. Cataldi, F. Arrichiello, P.R. Giordano, S. Chiaverini, A. Franchi, Adaptive trajectory tracking for quadrotor MAVs in presence of parameter uncertainties and external disturbances, IEEE Transactions on Control Systems Technology, 26(1) (2018) 248-254.
[31] H.J. Kim, D.H. Shim, A flight control system for aerial robots: algorithms and experiments, Control engineering practice, 11(12) (2003) 1389-1400.
[32] H. Voos, Nonlinear control of a quadrotor micro-UAV using feedback-linearization, in:  Mechatronics, 2009. ICM 2009. IEEE International Conference on, IEEE, 2009, pp. 1-6.
[33] H. Pang, X. Zhang, Z. Xu, Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints, ISA Transactions, 88 (2019) 23-36.
[34] A.K. Khalaji, H. Tourajizadeh, Nonlinear Lyapounov based control of an underwater vehicle in presence of uncertainties and obstacles, Ocean Engineering, 198 (2020) 106998.
[35] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Springer, 1986.
[36] B.K. Sahu, B. Subudhi, Potential function-based path-following control of an autonomous underwater vehicle in an obstacle-rich environment, Transactions of the Institute of Measurement and Control, 39(8) (2017) 1236-1252.
[37] O. Mofid, S. Mobayen, Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties, ISA transactions, 72 (2018) 1-14.