[1] S. Yaghoobi-Khankhajeh, R. Alizadeh, R. Zarghami, Adsorption modeling of CO2 in fluidized bed reactor, Chemical Engineering Research and Design, 129 (2018) 111-121.
[2] M. Erans, V. Manovic, E.J. Anthony, Calcium looping sorbents for CO2 capture, Applied Energy, 180 (2016) 722-742.
[3] J. Valverde, P. Sanchez-Jimenez, L.A. Perez-Maqueda, Ca-looping for postcombustion CO2 capture: a comparative analysis on the performances of dolomite and limestone, Applied Energy, 138 (2015) 202-215.
[4] T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, K. Tejima, A twin fluid-bed reactor for removal of CO2 from combustion processes, Chemical Engineering Research and Design, 77(1) (1999) 62-68.
[5] J. Blamey, E. Anthony, J. Wang, P. Fennell, The calcium looping cycle for large-scale CO2 capture, Progress in Energy and Combustion Science, 36(2) (2010) 260-279.
[6] H. Guo, Z. Xu, T. Jiang, Y. Zhao, X. Ma, S. Wang, The effect of incorporation Mg ions into the crystal lattice of CaO on the high temperature CO2 capture, Journal of CO2 Utilization, 37 (2020) 335-345.
[7] H. Guo, S. Yan, Y. Zhao, X. Ma, S. Wang, Influence of water vapor on cyclic CO2 capture performance in both carbonation and decarbonation stages for Ca-Al mixed oxide, Chemical Engineering Journal, 359 (2019) 542-551.
[8] M. Broda, C.R. Müller, Synthesis of highly efficient, Ca‐based, Al2O3‐stabilized, carbon gel‐templated CO2 sorbents, Advanced Materials, 24(22) (2012) 3059-3064.
[9] A.M. Kierzkowska, L.V. Poulikakos, M. Broda, C.R. Müller, Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique, International Journal of Greenhouse Gas Control, 15 (2013) 48-54.
[10] C. Zhao, X. Chen, C. Zhao, Multiple-cycles behavior of K2CO3/Al2O3 for CO2 capture in a fluidized-bed reactor, Energy & fuels, 24(2) (2010) 1009-1012.
[11] M. Zhang, Y. Peng, Y. Sun, P. Li, J. Yu, Preparation of CaO–Al2O3 sorbent and CO2 capture performance at high temperature, Fuel, 111 (2013) 636-642.
[12] S. Wu, L. Wang, Improvement of the stability of a ZrO2-modified Ni–nano-CaO sorption complex catalyst for ReSER hydrogen production, international journal of hydrogen energy, 35(13) (2010) 6518-6524.
[13] Y. Hu, W. Liu, H. Chen, Z. Zhou, W. Wang, J. Sun, X. Yang, X. Li, M. Xu, Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture, Fuel, 181 (2016) 199-206.
[14] A. Antzara, E. Heracleous, A.A. Lemonidou, Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters, Applied energy, 156 (2015) 331-343.
[15] X. Zhang, Z. Li, Y. Peng, W. Su, X. Sun, J. Li, Investigation on a novel CaO–Y2O3 sorbent for efficient CO2 mitigation, Chemical Engineering Journal, 243 (2014) 297-304.
[16] R. Sun, Y. Li, H. Liu, S. Wu, C. Lu, CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Applied energy, 89(1) (2012) 368-373.
[17] C.-t. Yu, H.-t. Kuo, Y.-m. Chen, Carbon dioxide removal using calcium aluminate carbonates on titanic oxide under warm-gas conditions, Applied Energy, 162 (2016) 1122-1130.
[18] C. Qin, J. Yin, B. Feng, J. Ran, L. Zhang, V. Manovic, Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping, Applied energy, 164 (2016) 400-410.
[19] Y. Hu, W. Liu, J. Sun, M. Li, X. Yang, Y. Zhang, M. Xu, Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture, Chemical Engineering Journal, 273 (2015) 333-343.
[20] B. Azimi, M. Tahmasebpoor, P.E. Sanchez-Jimenez, A. Perejon, J.M. Valverde, Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents, Chemical Engineering Journal, 358 (2019) 679-690.
[21] A. Lasheras, J. Ströhle, A. Galloy, B. Epple, Carbonate looping process simulation using a 1D fluidized bed model for the carbonator, International Journal of Greenhouse Gas Control, 5(4) (2011) 686-693.
[22] C. Ortiz, R. Chacartegui, J. Valverde, J. Becerra, L.A. Perez-Maqueda, A new model of the carbonator reactor in the calcium looping technology for post-combustion CO2 capture, Fuel, 160 (2015) 328-338.
[23] K. Daizo, O. Levenspiel, Fluidization engineering, (1991).
[24] M. Alonso, N. Rodríguez, G. Grasa, J. Abanades, Modelling of a fluidized bed carbonator reactor to capture CO2 from a combustion flue gas, Chemical Engineering Science, 64(5) (2009) 883-891.
[25] M. Abreu, P. Teixeira, R.M. Filipe, L. Domingues, C.I. Pinheiro, H.A. Matos, Modeling the deactivation of CaO-based sorbents during multiple Ca-looping cycles for CO2 post-combustion capture, Computers & Chemical Engineering, 134 (2020) 106679.
[26] J.C. Abanades, E.J. Anthony, D.Y. Lu, C. Salvador, D. Alvarez, Capture of CO2 from combustion gases in a fluidized bed of CaO, AIChE Journal, 50(7) (2004) 1614-1622.
[27] D. Escudero, T.J. Heindel, Bed height and material density effects on fluidized bed hydrodynamics, Chemical Engineering Science, 66(16) (2011) 3648-3655.