[1] V. Novozhilov, Computational fluid dynamics modeling of compartment fires, Progress in Energy and Combustion science, 27(6) (2001) 611-666.
[2] S. Hostikka, K.B. McGrattan, Large eddy simulation of wood combustion, in: Proceedings of the Ninth International Interflam Conference, 2001, pp. 755-762.
[3] Y.-L. Huang, H.-R. Shiu, S.-H. Chang, W.-F. Wu, S.-L. Chen, Comparison of combustion models in cleanroom fire, Journal of Mechanics, 24(3) (2008) 267-275.
[4] G. Maragkos, B. Merci, Large Eddy simulations of CH4 fire plumes, Flow, Turbulence and Combustion, 99(1) (2017) 239-278.
[5] G. Maragkos, T. Beji, B. Merci, Towards predictive simulations of gaseous pool fires, Proceedings of the Combustion Institute, 37(3) (2019) 3927-3934.
[6] E.J. Weckman, A.B. Strong, Experimental investigation of the turbulence structure of medium-scale methanol pool fires, Combustion and Flame, 105(3) (1996) 245-266.
[7] J.X. Wen, L.Y. Huang, J. Roberts, The effect of microscopic and global radiative heat exchange on the field predictions of compartment fires, Fire Safety Journal, 36(3) (2001) 205-223.
[8] R. Rawat, H. Pitsch, J. Ripoll, Large-eddy simulation of pool fires with detailed chemistry using an unsteady flamelet model, CTR Proc, (2002) 357-367.
[9] S. Tieszen, T. O’hern, R. Schefer, E. Weckman, T. Blanchat, Experimental study of the flow field in and around a one meter diameter methane fire, Combustion and Flame, 129(4) (2002) 378-391.
[10] P.E. DESJARDIN, Modeling of conditional dissipation rate for flamelet models with application to large eddy simulation of fire plumes, Combustion science and technology, 177(10) (2005) 1883-1916.
[11] P.E. DesJardin, T.J. O’Hern, S.R. Tieszen, Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume, Physics of Fluids, 16(6) (2004) 1866-1883.
[12] V. Minh Le, A. Marchand, S. Verma, R. Xu, J. White, A. Marshall, T. Rogaume, F. Richard, J. Luche, A. Trouve, Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects, Fire Safety Journal, 106 (2019).
[13] A. Yuen, G. Yeoh, V. Timchenko, S. Cheung, T. Barber, Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment, International Journal of Heat and Mass Transfer, 96 (2016) 171-188.
[14] A. Yuen, G. Yeoh, V. Timchenko, S. Cheung, T. Chen, Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires, Numerical Heat Transfer, Part A: Applications, 69(11) (2016) 1223-1241.
[15] A.C. Yuen, G.H. Yeoh, V. Timchenko, S.C. Cheung, Q.N. Chan, T. Chen, On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions, International Journal of Computational Fluid Dynamics, 31(6-8) (2017) 324-337.
[16] H. Pasdarshahri, G. Heidarinejad, K. Mazaheri, Comparison of Turbulence Sub-Grid Scale Model for Modeling of Large Scale Pool Fire Using LES, Energy: Engineering & Managment, 3(1) (2013) 52-61 (in Persian).
[17] J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, Journal of Fluid Mechanics, 41(2) (1970) 453-480.
[18] S.B. Pope, Turbulent flows, in, IOP Publishing, 2001.
[19] I.S. Ertesvåg, Analysis of Some Recently Proposed Modifications to the Eddy Dissipation Concept (EDC), Combustion Science and Technology, (2019) 1-29.
[20] N. Peters, Laminar flamelet concepts in turbulent combustion, in: Symposium (International) on Combustion, Elsevier, 1988, pp. 1231-1250.
[21] N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in energy and combustion science, 10(3) (1984) 319-339.
[22] R. Design, CHEMKIN Tutorials Manual CHEMKIN® Software. 10112/15112, in, December, 2017.
[23] N. Peters, Turbulent combustion, Cambridge university press, 2000.
[24] C.D. Pierce, P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of fluid Mechanics, 504 (2004) 73-97.
[25] H. Müller, M. Pfitzner, Implementation of a Steady Laminar Flamelet Model for non-premixed combustion in LES and RANS simulations, in: 8th International OpenFOAM Workshop, 2013, pp. 1-12.
[26] B.A. Perry, M.E. Mueller, A.R. Masri, A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets, Proceedings of the Combustion Institute, 36(2) (2017) 1767-1775.
[27] W. Han, A. Scholtissek, C. Hasse, The role of tangential diffusion in evaluating the performance of flamelet models, Proceedings of the Combustion Institute, (2018).
[28] A. Yuen, G. Yeoh, V. Timchenko, T. Barber, LES and multi-step chemical reaction in compartment fires, Numerical Heat Transfer, Part A: Applications, 68(7) (2015) 711-736.
[29] C. Jiménez, F. Ducros, B. Cuenot, B. Bédat, Subgrid scale variance and dissipation of a scalar field in large eddy simulations, Physics of Fluids, 13(6) (2001) 1748-1754.
[30] K.D. Steckler, J.G. Quintiere, W.J. Rinkinen, Flow induced by fire in a compartment, Symposium (International) on Combustion, 19(1) (1982) 913-920.
[31] J. Floyd, H. Baum, K. McGrattan, A mixture fraction combustion model for fire simulation using CFD, in: Proceedings of the International Conference on Engineered Fire Protection Design, Society of Fire Protection Engineers, 2001, pp. 279-290.
[32] G. Maragkos, T. Beji, B. Merci, Advances in modelling in CFD simulations of turbulent gaseous pool fires, Combustion and Flame, 181 (2017) 22-38.
[33] M. Landfahrer, C. Schluckner, R. Prieler, H. Gerhardter, T. Zmek, J. Klarner, C. Hochenauer, Development and application of a numerically efficient model describing a rotary hearth furnace using CFD, Energy, 180 (2019) 79-89.
[34] M. Buchmayr, J. Gruber, M. Hargassner, C. Hochenauer, Performance analysis of a steady flamelet model for the use in small-scale biomass combustion under extreme air-staged conditions, Journal of the Energy Institute, 91(4) (2018) 534-548.