[1] G.W. Leibniz, G.F.A. L’Hopital, Letter from Hanover, Germany, to G.F.A. L’Hopital, September 30, reprinted 1962, Olms verlag, Hildesheim, Germany, Mathematische Schriften, 2 (1962) 301-302.
[2] P. Nabonnand, L. Rollet, Les Nouvelles annales de mathématiques: journal des candidats aux Écoles polytechnique et normale, Conferenze e Seminari dell’Associazione Subalpina Mathesis, (2012) 1-10.
[3] B. Ross, The development of fractional calculus 1695–1900, Historia Mathematica, 4(1) (1977) 75-89.
[4] I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1999.
[5] A. Loverro, Fractional calculus: history, definitions and applications for the engineer, Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, (2004) 1-28.
[6] G. Catania, S. Sorrentino, Fractional derivative linear models for describing the viscoelastic dynamic behaviour of polymeric beams, in: 24th Conference and Exposition on Structural Dynamics 2006, IMAC-XXIV, Society for Experimental Mechanics (SEM), 2006.
[7] M.Q. Tang, Y.P. Li, Equilibrium paths of a fractional order viscoelastic two-member truss, in: Advanced Materials Research, Trans Tech Publ, 2012, pp. 963-968.
[8] K. Lazopoulos, A. Lazopoulos, On fractional bending of beams, Archive of Applied Mechanics, 86(6) (2016) 1133-1145.
[9] M.F. Oskouie, R. Ansari, H. Rouhi, Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method, Meccanica, 53(4-5) (2018) 1115-1130.
[10] Y. Wang, T. Tsai, Static and dynamic analysis of a viscoelastic plate by the finite element method, Applied Acoustics, 25(2) (1988) 77-94.
[11] S. Subramanian, Dynamic Stability of Viscoelastic Plates Subjected to Ramdomly Varying In-Plane Loads, in: Engineering Mechanics, ASCE, 1995, pp. 191-194.
[12] Y. Sun, H. Ma, Z. Gao, On the stability of anisotropic viscoelastic thin plates, Chinese Journal of Aeronautics, 10(1) (1997) 18-21.
[13] H. Hu, Y.-m. Fu, Nonlinear dynamics analysis of cracked rectangular viscoelastic plates, Journal of Central South University of Technology, 14(1) (2007) 336-341.
[14] J. Soukup, F. Valeš, J. Volek, J. Skočilas, Transient vibration of thin viscoelastic orthotropic plates, Acta Mechanica Sinica, 27(1) (2011) 98-107.
[15] A. Zenkour, H. El-Mekawy, Bending of inhomogeneous sandwich plates with viscoelastic cores, Journal of Vibroengineering, 16(7) (2014) 3260-3272.
[16] R. Kolahchi, A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods, Aerospace Science and Technology, 66 (2017) 235-248.
[17] Y.A. Rossikhin, M.V. Shitikova, A.I. Krusser, To the question on the correctness of fractional derivative models in dynamic problems of viscoelastic bodies, Mechanics Research Communications, 77 (2016) 44-49.
[18] N. Jafari, M. Azhari, Time-dependent static analysis of viscoelastic Mindlin plates by defining a time function, Mechanics of Time-Dependent Materials, (2019) 1-18.
[19] K. Adolfsson, M. Enelund, Fractional derivative viscoelasticity at large deformations, Nonlinear dynamics, 33(3) (2003) 301-321.
[20] Z. Xu, W. Chen, A fractional-order model on new experiments of linear viscoelastic creep of Hami Melon, Computers & Mathematics with Applications, 66(5) (2013) 677-681.
[21] R.L. Bagley, P.J. Torvik, Fractional calculus-a different approach to the analysis of viscoelastically damped structures, AIAA journal, 21(5) (1983) 741-748.
[22] L. Eldred, W. Baker, A. Palazotto, Numerical application of fractional derivative model constitutive relations for viscoelastic materials, Computers & structures, 60(6) (1996) 875-882.
[23] S. Park, Rheological modeling of viscoelastic passive dampers, in: Smart Structures and Materials 2001: Damping and Isolation, International Society for Optics and Photonics, 2001, pp. 343-354.
[24] M. Sasso, G. Palmieri, D. Amodio, Application of fractional derivatives models to time-dependent materials, in: Time Dependent Constitutive Behavior and Fracture/Failure Processes, Volume 3, Springer, 2011, pp. 213-221.
[25] M. Di Paola, R. Heuer, Fractional visco-elastic Euler–Bernoulli beam, International Journal of Solids and Structures, 50 (2013) 3505-3510.
[26] C.-C. Zhang, H.-H. Zhu, B. Shi, G.-X. Mei, Bending of a rectangular plate resting on a fractionalized Zener foundation, Structural Engineering and Mechanics, 52(6) (2014) 1069-1084.
[27] C. Zhang, H. Zhu, B. Shi, L. Liu, Theoretical investigation of interaction between a rectangular plate and fractional viscoelastic foundation, Journal of Rock Mechanics and Geotechnical Engineering, 6(4) (2014) 373-379.
[28] K. Lazopoulos, D. Karaoulanis, Α. Lazopoulos, On fractional modelling of viscoelastic mechanical systems, Mechanics Research Communications, 78 (2016) 1-5.
[29] G. Tekin, F. Kadıoğlu, Viscoelastic behavior of shear-deformable plates, International Journal of Applied Mechanics, 9(06) (2017) 1750085.
[30] W. Cai, W. Chen, W. Xu, Fractional modeling of Pasternak-type viscoelastic foundation, Mechanics of Time-Dependent Materials, 21(1) (2017) 119-131.
[31] A. Zbiciak, W. Grzesikiewicz, Characteristics of fractional rheological models of asphalt-aggregate mixtures, Logistyka, (6) (2011).
[32] R.P. Shimpi, Refined plate theory and its variants, AIAA journal, 40(1) (2002) 137-146.
[33] H.F. Brinson, L.C. Brinson, Polymer engineering science and viscoelasticity, 2008.
[34] J. Rouzegar, R.A. Sharifpoor, Flexure of thick plates resting on elastic foundation using two-variable refined plate theory, Archive of Mechanical Engineering, 62(2) (2015) 181-203.