کاهش گشتاور محرک‌های ربات موازی دو درجه آزادی با وزنه‌های تعادل و طراحی مسیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه رباتیک، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

این مقاله به حرکت نقطه به نقطه مجری نهایی ربات موازی دو درجه آزادی با کمترین گشتاور مصرفی می‌پردازد. روش ارائه‌شده کاهش اندازه گشتاورهای مفاصل ربات را در حالت دینامیکی در نظر می‌گیرد. در این روش پارامترهای طراحی و مسیر بهینه ربات به صورت همزمان برای وظیفه نقطه به نقطه ازپیش‌تعریف‌شده بدست می‌آیند. دو وزنه تعادل قابل تنظیم به لینک‌های محرک ربات متصل می‌گردند و جرم و زاویه نصب آنها به عنوان پارامترهای طراحی ربات در نظر گرفته می‌شوند. برای یافتن مسیر بهینه حرکت ربات از میانیاب اسپیلاین مرتبه سه استفاده می‌شود. با در نظر گرفتن مینیمم تلاش مصرفی به عنوان تابع هدف مسئله، روش بهینه‌سازی جام اعداد برای یافتن مقادیر بهینه متغیرهای طراحی مسیر و پارامترهای طراحی ربات استفاده می‌گردد. نتایج شبیه‌سازی نشان می‌دهند که تابع هدف تقریبا به مقدار بهینه صفر دست یافته است. جهت تایید نتایج شبیه‌سازی و نمایش اثربخشی روش، یک ربات موازی دو درجه آزادی آزمایشگاهی ساخته شده است. با تنظیم پارامترهای طراحی وزنه‌های تعادل ربات برای حرکت نقطه به نقطه داده شده، محرک‌های هوشمند سیستم آزمایشگاهی در حالت کنترل موقعیت راه‌اندازی می‌شوند. خروجی‌های آزمایشگاهی نشان می‌دهند که تابع هدف حدود 90 درصد نسبت به طرح رایج ربات کاهش داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Torque minimization of 2-DOF parallel robot using counterweights and trajectory planning

نویسندگان [English]

  • Mojtaba Riyahi Vezvari 1
  • Amin Nikoobin 1
  • Ali Ghoddosian 2
1 Robotics Lab, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
2 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
چکیده [English]

This paper investigates the point-to-point motion of the end effector of a 2-DOF parallel robot with minimum torque consumption. The presented method improves the dynamic performance of the robot. This method compensates the inertia force, gravity, Coriolis and the centrifugal terms of the system. The design parameters and optimal trajectory of the robot are simultaneously obtained for a predefined point-to-point motion. Two adjustable counterweights are attached to each active link. The mass of the counterweights and the installation angle of them are considered as design parameters. The optimal trajectory of the robot is obtained by the third-order spline interpolation. Minimum-effort is the objective function of the problem. The numbers cup optimization method is used to find optimum values of the design variables of trajectory and design parameters of the robot. The simulation results show that the objective function has been approximately reached zero value. An experimental robot was developed to verify the simulation results and illustrate the efficiency of the proposed approach. With adjusting the design parameters of the robot, the servo-actuators are operated in position control mode. The experimental outputs show that the objective function has been reduced by about 90% compared to the typical form of the robot.
 

کلیدواژه‌ها [English]

  • Torque minimization
  • 2-DOF parallel robot
  • Counterweights
  • Optimal trajectory
  • Optimization
[1] J.P. Merlet, Parallel robots, Springer Science & Business Media, 2006.
[2] T. Huang, Z. Li, M. Li, D.G. Chetwynd, C.M. Gosselin, Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations, Journal of Mechanical Design, 126(3) (2004) 449-455.
[3] T. Huang, S. Liu, J. Mei, D.G. Chetwynd, Optimal design of a 2-DOF pick-and-place parallel robot using dynamic performance indices and angular constraints, Mechanism and Machine Theory, 70 (2013) 246-253.
[4] N.D. Sang, D. Matsuura, Y. Sugahara, Y. Takeda, Kinematic Design of Five-Bar Parallel Robot by Kinematically Defined Performance Index for Energy Consumption, in:  European Conference on Mechanism Science, Springer, 2018, pp. 239-247.
[5] U. Dincer, M. Cevik, Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bezier curves and cubic polynomials, Mechanism and Machine Theory, 132 (2019) 248-263.
[6] G. Quaglia, Z. Yin, Static balancing of planar articulated robots, Frontiers of Mechanical Engineering, 10(4) (2015) 326-343.
[7] L.-P. Luo, C. Yuan, R.-J. Yan, Q. Yuan, J. Wu, K.-S. Shin, C.-S. Han, Trajectory planning for energy minimization of industry robotic manipulators using the Lagrange interpolation method, International Journal of Precision Engineering and Manufacturing, 16(5) (2015) 911-917.
[8] A. Nikoobin, M. Moradi, Optimal balancing of the robotic manipulators, in:  Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots, Springer, 2016, pp. 337-363.
[9] S. Kucuk, Optimal trajectory generation algorithm for serial and parallel manipulators, Robotics and Computer-Integrated Manufacturing, 48 (2017) 219-232.
[10] H. Misaghi, A. Mahmoudi, M.T. Masouleh, Dynamic analysis of a planar parallel robot with the purpose of obtaining optimal inertial parameters for energy consumption, in:  2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), IEEE, 2017, pp. 0931-0936.
[11] S. Gong, R. Alqasemi, R. Dubey, Gradient Optimization of Inverse Dynamics for Robotic Manipulator Motion Planning Using Combined Optimal Control, in:  ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, pp. V04BT05A017-V004BT005A017.
[12] M.R. Vezvari, A. Nikoobin, Optimal Balancing of Spatial Suspended Cable Robot in Point-to-Point Motion using Indirect Approach, International Journal of Advanced Design & Manufacturing Technology, 10(3) (2017).
[13] U. Nusbaum, M.W. Cohen, Y. Halevi, Minimum Energy Control of Redundant Systems Using Evolutionary Bi-Level Optimization, in:  ASME 2018 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2018, pp. V04AT06A038-V004AT006A038.
[14] Y. Zhang, V. Arakelian, J.-P. Le Baron, Linkage Design for Gravity Balancing by Means of Non-zero Length Springs, in:  ROMANSY 22–Robot Design, Dynamics and Control, Springer, 2019, pp. 163-170.
[15] J. Woolfrey, W. Lu, D. Liu, A Control Method for Joint Torque Minimization of Redundant Manipulators Handling Large External Forces, Journal of Intelligent & Robotic Systems,  (2019) 1-14.
[16] V. Gupta, S.K. Saha, H. Chaudhary, Optimum Design of Serial Robots, Journal of Mechanical Design, 141(8) (2019) 082303.
[17] P. Boscariol, D. Richiedei, Energy-efficient design of multipoint trajectories for Cartesian robots, The International Journal of Advanced Manufacturing Technology,  (2019) 1-18.
[18] A. Martini, M. Troncossi, A. Rivola, Algorithm for the static balancing of serial and parallel mechanisms combining counterweights and springs: Generation, assessment and ranking of effective design variants, Mechanism and Machine Theory, 137 (2019) 336-354.
[19] G. Alici, B. Shirinzadeh, Optimum dynamic balancing of planar parallel manipulators based on sensitivity analysis, Mechanism and Machine Theory, 41(12) (2006) 1520-1532.
[20] J.H. Ferziger, Numerical methods for engineering application, Wiley New York, 1981.
[21] M.R. Vezvari, A. Ghoddosian, A. Nikoobin, Numbers Cup Optimization: A new method for optimization problems, Structural Engineering and Mechanics, 66(4) (2018) 465-476.
[22] Z. Xu, S. Wei, N. Wang, X. Zhang, Trajectory planning with Bezier curve in Cartesian space for industrial gluing robot, in:  International Conference on Intelligent Robotics and Applications, Springer, 2014, pp. 146-154.