[1] G. Tsatsaronis, Strengths and limitations of exergy analysis, in: Thermodynamic optimization of complex energy systems, Springer, 1999, pp. 93-100.
[2] G. Tsatsaronis, M.-H. Park, On avoidable and unavoidable exergy destructions and investment costs in thermal systems, Energy conversion and management, 43(9-12) (2002) 1259-1270.
[3] S. Kelly, Energy systems improvement based on endogenous and exogenous exergy destruction, (2008).
[4] T. Morosuk, G. Tsatsaronis, A new approach to the exergy analysis of absorption refrigeration machines, Energy, 33(6) (2008) 890-907.
[5] S. Kelly, G. Tsatsaronis, T. Morosuk, Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy, 34(3) (2009) 384-391.
[6] M. Fallah, S.M.S. Mahmoudi, M. Yari, R.A. Ghiasi, Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system, Energy conversion and management, 108 (2016) 190-201.
[7] M. Fallah, H. Siyahi, R.A. Ghiasi, S. Mahmoudi, M. Yari, M. Rosen, Comparison of different gas turbine cycles and advanced exergy analysis of the most effective, Energy, 116 (2016) 701-715.
[8] M. Fallah, S.M.S. Mahmoudi, M. Yari, A comparative advanced exergy analysis for a solid oxide fuel cell using the engineering and modified hybrid methods, Energy conversion and management, 168 (2018) 576-587.
[9] M. Fallah, S. Mahmoudi, M. Yari, Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell, Energy, 141 (2017) 1097-1112.
[10] H. Ansarinasab, M. Mehrpooya, A. Mohammadi, Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system, Journal of cleaner production, 144 (2017) 248-259.
[11] Z. Wang, W. Xiong, D.S.-K. Ting, R. Carriveau, Z. Wang, Conventional and advanced exergy analyses of an underwater compressed air energy storage system, Applied energy, 180 (2016) 810-822.
[12] J. Galindo, S. Ruiz, V. Dolz, L. Royo-Pascual, Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine, Energy conversion and management, 126 (2016) 217-227.
[13] E. Gholamian, P. Hanafizadeh, P. Ahmadi, Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system, Applied Thermal Engineering, 137 (2018) 689-699.
[14] S. Zhang, J. Jing, H. Jiang, M. Qin, D. Chen, C. Chen, Advanced exergy analyses of modified ethane recovery processes with different refrigeration cycles, Journal of Cleaner Production, (2020) 119982.
[15] H. Zhao, T. Yuan, J. Gao, X. Wang, J. Yan, Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290, Energy, 166 (2019) 845-861.
[16] Y. Wang, Y. Liu, X. Liu, W. Zhang, P. Cui, M. Yu, Z. Liu, Z. Zhu, S. Yang, Advanced exergy and exergoeconomic analyses of a cascade absorption heat transformer for the recovery of low grade waste heat, Energy Conversion and Management, 205 (2020) 112392.
[17] Z. Liu, Z. Liu, X. Yang, H. Zhai, X. Yang, Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system, Energy Conversion and Management, 205 (2020) 112391.
[18] E.G. Feher, The supercritical thermodynamic power cycle, Energy conversion, 8(2) (1968) 85-90.
[19] G. Angelino, Carbon dioxide condensation cycles for power production, (1968).
[20] J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy, 34(9) (2009) 1172-1178.
[21] V. Dostal, M.J. Driscoll, P. Hejzlar, A supercritical carbon dioxide cycle for next generation nuclear reactors, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.
[22] R. Singh, S.A. Miller, A.S. Rowlands, P.A. Jacobs, Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant, Energy, 50 (2013) 194-204.
[23] H. Nami, S. Mahmoudi, A. Nemati, Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Applied Thermal Engineering, 110 (2017) 1315-1330.
[24] X. Wang, Q. Liu, Z. Bai, J. Lei, H. Jin, Thermodynamic analysis of the cascaded supercritical CO2 cycle integrated with solar and biomass energy, Energy procedia, 105 (2017) 445-452.
[25] J. Song, X.-s. Li, X.-d. Ren, C.-w. Gu, Performance improvement of a preheating supercritical CO2 (S-CO2) cycle based system for engine waste heat recovery, Energy Conversion and Management, 161 (2018) 225-233.
[26] A.D. Akbari, S.M. Mahmoudi, Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy, 78 (2014) 501-512.
[27] Z. Mohammadi, M. Fallah, S.S. Mahmoudi, Advanced exergy analysis of recompression supercritical CO2 cycle, Energy, 178 (2019) 631-643.
[28] J. Sarkar, S. Bhattacharyya, Optimization of recompression S-CO2 power cycle with reheating, Energy Conversion and Management, 50(8) (2009) 1939-1945.
[29] M. Yari, M. Sirousazar, A novel recompression S-CO2 Brayton cycle with pre-cooler exergy utilization, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(7) (2010) 931-946.
[30] V. Zare, S. Mahmoudi, M. Yari, An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle, Energy, 61 (2013) 397-409.
[31] O. Balli, Advanced exergy analyses of an aircraft turboprop engine (TPE), Energy, 124 (2017) 599-612.
[32] T. Bai, J. Yu, G. Yan, Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector, Energy, 113 (2016) 385-398.
[33] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal design and optimization, John Wiley & Sons, 1995.