مدل‌ عددی مبتنی بر تصویر برای دارورسانی به تومورهای جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

استفاده از مدل‌های ریاضی و شبیه‌سازی‌های عددی در کنار مطالعات بالینی می‌تواند به درک صحیح مکانیزم دارورسانی به تومور کمک کرده، کارآیی درمان دارویی را ارتقا داده و اثر پارامترهای فیزیولوژیکی مختلف را بر رفتار تومورها نشان ‌دهد. هدف اصلی این پژوهش استفاده از یک مدل چندمقیاسی مبتنی بر مدل‌سازی ریاضی و نیز دینامیک سیالات محاسباتی برای بررسی رسانش دارو به تومور و پیش‌بینی اثر درمان است. مدل فیزیولوژیکی واقعی‌ترشده‌ی تومور نسبت به مدل‌های پیشین با به‌دست‌آوردن هندسه شبکه مویرگی از یک تصویر و نیز درنظر گرفتن ناحیه نکروز و جذب سلولی مورد بررسی قرار می‌گیرد. در ادامه، مدل‌سازی جریان سیال و رسانش دارو در فضای میان بافتی انجام می‌گیرد. نسبت سلول‌های کشته‌شده توموری بعد از درمان بافت سرطانی با دوکسوروبیسین در حدود 69/03 درصد به‌دست آمده است. نتایج نشان می‌دهند که مقدار غلظت در ناحیه نکروز بسیار پایین بوده و تنها مقدار کمی دارو به‌واسطه دیفیوژن به درون ناحیه نکروز نفوذ می‌کند. یافته‌های مطالعه‌ی حاضر می‌تواند به درک بهتر مکانیزم دارورسانی به تومورهای جامد برای غلبه بر موانع میکرو محیطی تومور با هدف اثر بخشی بهتر درمان کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Image-based numerical model for drug delivery to solid tumors

نویسندگان [English]

  • Farshad Moradi Kashkooli
  • Majid Soltani
  • Mohammad Hosein Hamedi
Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Mathematical models and numerical simulations along with clinical studies can help provide better understanding of drug delivery mechanisms, increase the efficacy of therapy, and demonstrate the effect of various physiological parameters on tumor behavior. The main objective of this study is to use a multiscale model based on mathematical modeling and computational fluid dynamics to evaluate drug delivery to a solid tumor and to predict treatment efficacy. A more-realistic physiological model of the tumor compared to the previous models is examined by obtaining the capillary-network’s geometry from an image, as well as by considering the necrotic area and cellular uptake. Fluid flow modeling and drug delivery simulation are then performed for the interstitium. The fraction of killed cells is obtained approximately 69.03% after the cancerous tissue is treated with doxorubicin. Results also demonstrate that the drug concentration in the necrotic area is very low; only a small amount of the drug penetrates into the necrotic area by diffusion. The findings of this study may help researchers better understand the mechanism of drug delivery to solid tumors, —a necessary step in overcoming the micro-environmental barriers of tumors that impede treatment efficacy.

کلیدواژه‌ها [English]

  • Drug delivery
  • Chemotherapy
  • Solid tumors
  • Capillary network
  • Necrotic region
  1.  F.Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians 68(6) (2018) 394–424.
  2. M. Mousavi, M.M. Gouya, R. Ramazani, M. Davanlou, N. Hajsadeghi, Z. Seddighi, Cancer incidence and mortality in Iran, Annals of Oncology 20(3) (2009) 556–563.
  3. Soltani, R. Rahpeima, F. Moradi Kashkooli, Breast cancer diagnosis with a microwave thermoacoustic imaging technique—a numerical approach, Medical & Biological Engineering & Computing 57 (2019)1497-1513.
  4. Quaranta, A.M. Weaver, P.T. Cummings, A.R.A. Anderson, Mathematical modeling of cancer: The future of prognosis and treatment. Clinica Chimica Acta 357(2) (2005) 173–179.
  5. K. Jain, L.T. Baxter, Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure, Cancer Research 48(24) (1988) 7022–7032.
  6. T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors. (I) role of interstitial pressure and convection, Microvascular Research 37(1) (1989) 77-104.
  7. Soltani, P. Chen, Numerical modeling of fluid flow in solid tumors, PLoS ONE 6 (2011) 1-15.
  8. Soltani, P. Chen, Effect of tumor shape and size on drug delivery to solid tumors, Journal of Biological Engineering 6(1) (2012) 4.
  9. Wu, Q. Long, S. Xu, A.R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature, Journal of Biomechanics 42(6) (2009) 712-721.
  10. Soltani, P. Chen, Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network, PLoS One 8(6) (2013) e67025.
  11. Soltani, M. Jabarifar, F. Moradi Kashkooli, A. Rahmim, Evaluation of inverse methods for estimation of mechanical parameters in solid tumors, Biomedical Physics & Engineering Express 6(3) (2020) 035027.
  12. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, M. Mousavi Naeenian, Numerical modeling of drug delivery in a dynamic solid tumor microvasculature, Microvascular Research 99 (2015) 43-56.
  13. Y. Arifin, K.Y.T. Lee, C.H. Wang, Chemotherapeutic drug transport to brain tumor, Journal of Controled Release, 137(3) (2009) 203–210.
  14. Zhan, X.Y. Xu, A mathematical model for thermosensitive liposomal delivery of Doxorubicine to solid tumour, Journal of Drug Delivery (2013) Article ID: 172529.
  15. Soltani, M. Sefidgar, H. Bazmara, M.E. Casey, R.M. Subramaniam, R.L. Wahl, A. Rahmim, Spatiotemporal distribution modeling of PET tracer uptake in solid tumors, Annals of Nuclear Medicin 31(2) (2017) 109-124.
  16. Bhandari, A. Bansal, A. Singh, N. Sinha, Numerical study of transport of anticancer drugs in heterogeneous vasculature of human brain tumors using dynamic contrast enhanced-magnetic resonance imaging, Journal of Biomechical Engineering 140 (2018) 051010.
  17. L. Pishko, G.W. Astary, T.H. Mareci, M. Sarntinoranont, Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity, Annals in Biomedical Engineering 39 (2011) 2360-2373.
  18. Asgari, M. Soltani, M. Sefidgar, Modeling of FMISO [F18] nanoparticle PET tracer in normal-cancerous tissue based on real clinical image, Microvascular Research 118 (2018) 20–30.
  19. Shojaee, H. Niroomand-Oscuii, M. Sefidgar, L. Alinezhad, Effect of nanoparticle size, magnetic intensity, and tumor distance on the distribution of the magnetic nanoparticles in a heterogeneous tumor microenvironment. Journal of Magnetism and Magnetic Material 498 (2020) 166089.
  20. Stylianopoulos, E.A. Economides, J.W. Baish, D. Fukumura, R. Jain, Towards optimal design of cancer nanomedicines: multi-stage nanoparticles for the treatment of solid tumors, Annals in Biomedical Engineering 43(9) (2015) 2291-300.
  21. S. Patlak, D.A. Goldstein, J.F. Hoffman, The flow of solute and solvent across a two-membrane system, Journal of Theoritical Biology 5(3) (1963) 426-442.
  22. Mpekris, S.A. Athanassios, P. Pirentis, T. Stylianopoulos, Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery, Biomechanics and Modeling in Mechanobiology 14(6) (2015) 1391-1402.
  23. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, Journal of Theoritical Biology 259 (2009) 405–422.
  24. Steuperaert, G.F.D.U. Labate, Ch. Debbaut, O. De Wever, Ch. Vanhove, W. Ceelen, P. Segers, Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule, Drug Delivery 24(1) (2017) 491-501.
  25. R. McDougall, A.R. Anderson, M.A. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies, Journal of Theoritical Biology 241(3) (2006) 564–589.
  26. Moradi Kashkooli, M. Soltani, M. Rezaeian, E. Taatizadeh, M.H. Hamedi, Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor—computational approach, Microvascular Research 123 (2019) 111-124.
  27. R. Pries, T.W. Secomb, Blood flow in microvascular networks. In: R.F. Tuma, W.N. Duran, K. Ley (Eds.), Microcirculation, Academic Press (2010).
  28. Moradi Kashkooli, M. Soltani, M.H. Hamedi, Drug delivery to solid tumors with heterogeneous microvascular networks: Novel insights from image-based numerical modeling, European Journal of Pharmaceutical Sciences, 151 (2020) 105399.
  29. E. Huber, M. Bischof, S. Heiland, P. Peschke, R. Saffrich, H. Gro, K.E. Lipson, A. Abdollahi, Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy, Cancer Research 65 (2005) 3643–3655.
  30. Y. Arifin, C. Wang, K.A. Smith, Patient-specific chemotherapeutic drug delivery to brain tumors brain tissue tumor ventricle, Mimics Innovation Awards (2007) 1–9.
  31. Zhao, H. Salmon, M. Sarntinoranont, Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvascular Research 73 (2007) 224–236.
  32. Hompland, K. Gulliksrud, C. Ellingsen, E.K. Rofstad, Assessment of the interstitial fluid pressure of tumors by dynamic contrast-enhanced magnetic resonance imaging with contrast agents of different molecular weights, Acta Oncologica 52(3) (2013) 627–635.
  33. P. Butler, F.H. Grantham, P.M. Gullino, Bulk transfer of fluid in the interstitial compartment of mammary tumors, Cancer Research 35(11) (1975) 3084-3088.
  34. Soltani, H. Bazmara, M. Sefidgar, R. Subramaniam, A. Rahmim, Study on the impact of tumor shape and size on drug delivery to pancreatic tumors, Medical Physics 42 (2015) 3220.