[1] E. Cetinsoy, S. Dikyar, C. Hançer, K. Oner, E. Sirimoglu, M. Unel, M. Aksit, Design and construction of a novel quad tilt-wing UAV, Mechatronics, 22(6) (2012) 723-745.
[2] H. Mirhajia, design of controller for quadrotor using dynamic inversion method, Amirkabir, Iran, 2011.
[3] M.D. Schmidt, Simulation and control of a quadrotor unmanned aerial vehicle, (2011).
[4] N. Manafi, 6-DOF quadrotor modeling with controllable frame rotors, Amirkabir, Iran, 2014.
[5] A. Surriani, M. Arrofiq, Altitude control of quadrotor using fuzzy self tuning PID controller, in: 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), IEEE, 2017, pp. 67-72.
[6] N. Sydney, B. Smyth, D.A. Paley, Dynamic control of autonomous quadrotor flight in an estimated wind field, in: 52nd IEEE Conference on Decision and Control, IEEE, 2013, pp. 3609-3616.
[7] A. Rodriguez-Mata, M. Farza, M. M’Saad, Altitude control of quadrator UVAs using high gain observer-based output feedback high gain regulator, in: 2019 8th International Conference on Systems and Control (ICSC), IEEE, 2019, pp. 147-152.
[8] M. Labbadi, S. Nassiri, L. Bousselamti, M. Bahij, M. Cherkaoui, Fractional-order Fast Terminal Sliding Mode Control of Uncertain Quadrotor UAV with Time-varying Disturbances, in: 2019 8th International Conference on Systems and Control (ICSC), IEEE, 2019, pp. 417-422.
[9] Y. Bouzid, H. Siguerdidjane, E. Zareb, Improved IMC-filter design and IMC-PI equivalence: Application to quadrotor under gust of wind, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, (2020) 0959651819894188.
[10] X. Li, H. Zhang, W. Fan, J. Zhao, C. Wang, Multivariable finite-time composite control strategy based on immersion and invariance for quadrotor under mismatched disturbances, Aerospace Science and Technology, 99 (2020) 105763.
[11] T. Wan, An Investigation of Quad-rotor Aircraft Performance under Gust Wind and Heavy Rain Impacts, in: AIAA Scitech 2020 Forum, 2020, pp. 1735.
[12] G. Flores, V. González-Huitron, A. Rodríguez-Mata, Output Feedback Control for a Quadrotor Aircraft Using an Adaptive High Gain Observer, International Journal of Control, Automation and Systems, 1-13.
[13] A.A. Najm, I.K. Ibraheem, Altitude and Attitude Stabilization of UAV Quadrotor System using Improved Active Disturbance Rejection Control, Arabian Journal for Science and Engineering, 1-15.
[14] W. Craig, D. Yeo, D.A. Paley, Geometric Attitude and Position Control of a Quadrotor in Wind, Journal of Guidance, Control, and Dynamics, (2020) 1-14.
[15] S. Bouabdallah, Design and control of quadrotors with application to autonomous flying, Epfl, 2007.
[16] U. Ansari, A.H. Bajodah, M.T. Hamayun, Quadrotor control via robust generalized dynamic inversion and adaptive non‐singular terminal sliding mode, Asian Journal of Control, 21(3) (2019) 1237-1249.
[17] N.K. Tran, Modeling and Control of a Quadrotor in a Wind Field, McGill University, (2015).
[18] F.B. Leahy, Discrete gust model for launch vehicle assessments, (2008).
[19] T. Çimen, State-dependent Riccati equation (SDRE) control: A survey, IFAC Proceedings Volumes, 41(2) (2008) 3761-3775.
[20] H. Jafari, M. Zareh, J. Roshanian, A. Nikkhah, An optimal guidance law applied to quadrotor using LQR method, Transactions of the Japan Society for Aeronautical and Space Sciences, 53(179) (2010) 32-39.
[21] E. Elbeltagi, T. Hegazy, D. Grierson, Comparison among five evolutionary-based optimization algorithms, Advanced engineering informatics, 19(1) (2005) 43-53.
[22] H. Voos, Nonlinear state-dependent Riccati equation control of a quadrotor UAV, in: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, IEEE, 2006, pp. 2547-2552.
[23] H.K. Khalil, J.W. Grizzle, Nonlinear systems, Prentice hall Upper Saddle River, NJ, 2002.
[24] J. Rascón-Enríquez, L.A. García-Delgado, J.R. Noriega, A. García-Juárez, E.S. Espinoza, Tracking Control for Quad-Rotor Using Velocity Field and Obstacle Avoidance Based on Hydrodynamics, Electronics, 9(2) (2020) 233.