بررسی پاسخ کد شبیه‌ساز چند منطقه‌ای مجهز به زیرمدل نشتی در موتور اشتعال جرقه‌ای ترکیب‌سوز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مکانیک دانشگاه محقق اردبیلی

2 محقق اردبیلی-فنی و مهندسی- مهندسی مکانیک

چکیده

در کار حاضر از موتور تک سیلندر پژوهشی، نتایج تجربی سیکل‌های با مد پرش جرقه در نسبت تراکم 9 و سرعت rpm1800 برای ترکیب‌های100%، 90%، 75% و 60% بنزین و مابقی گازطبیعی در نسبت هم‌ارزی استوکیومتری استخراج گردید. سپس یک کد شبیه‌ساز ورودی ترمودینامیکی چندمنطقه‌ای ترکیب‌سوز بنزین-گازطبیعی با زیر مدل نشتی توسعه داده شد. از نتایج تجربی با پرش جرقه، دو مجموعه 200 سیکلی موتورگردانی و احتراقی برای اهداف تایید کد فراهم گردید. در حالت موتورگردانی نتایج کد شبیه‌ساز با نشتی با میانگین داده‌های فشار-زاویه میل‌لنگ مجموعه موتورگردانی مقایسه شد و زیر مدل نشتی کد شبیه‌ساز تایید گردید. سپس در حالت احتراقی نیز نتایج کد شبیه‌ساز با میانگین داده‌های فشار-زاویه میل‌لنگ مجموعه احتراقی برای هر ترکیب بررسی و با خطای کمتر از 4% تایید شد. در حالت احتراقی جرم نشتی به شکاف‌ها قابل‌توجه‌تر از حالت موتورگردانی برآورد شد و با توجه به اینکه انحراف نتایج کد بدون نشتی با نتایج تجربی در مقایسه با انحراف نتایج کد با نشتی در حالت موتورگردانی انحراف جدی داشت، اعمال زیر مدل نشتی در کد شبیه‌ساز از اهمیت ویژه‌ای برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the response of a multi-zone simulation code equipped with blow-by sub-model in a dual fuel spark-ignition engine

نویسندگان [English]

  • Mehrdad Sarabi 1
  • Ebrahim Abdi Aghdam 2
1 PhD Student, Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili
2 Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh
چکیده [English]

In the present study, a single-cylinder research engine was utilized to capture experimental data at 9 compression ratio and 1800 rpm engine speed for dual fuel mixtures of 100%, 90%, 75% and 60% gasoline and the rest natural gas in skip-fire mode. Then, a gasoline- natural gas multi-zone thermodynamic entrainment simulation-code equipped with blow-by sub-model was developed. Two 200-cycle sets of free residual motoring and firing cycles were separated from the experimental data to check the response of the code. In motoring-case, the ensemble-average P-θ of the motoring set was compared with that of the code and the blow-by sub-model was verified. Next, in the firing-case, the results obtained from the code were compared with the ensemble-average P-θ of the firing set in each fuel combination and the code was validated. In the firing-case, the leakage to crevices was estimated to be considerably more than that of the motoring-case. In the firing mode of the code, the deviation of the obtained results of the code without blow-by option from the experimental results was more serious as compared to those of the code with blow-by, emphasizing the importance of the blow-by sub-model in the code.

کلیدواژه‌ها [English]

  • Multi-zone model
  • Blow-by
  • Gasoline-natural sas
  • Dual fuel
  • Spark-ignition engine
[1]   J.B. HEYWOOD, Internal combustion engine fundamentals, Mcgraw-hill New York, (1988).
[2]  H. Chen, J. He, X. Zhong, Engine combustion and emission fuelled with natural gas: a review, Journal of the Energy Institute, 92(4) (2019) 1123-1136.
[3] K. Suzuki, M. Nemoto, K. Machida, Model-based calibration process for producing optimal spark advance in a gasoline engine equipped with a variable valve train, 0148-7191, SAE Technical Paper, 2006.
[4]  M. Namazian, J.B. Heywood, Flow in the piston-cylinder-ring crevices of a spark-ignition engine: Effect on hydrocarbon emissions, efficiency and power, SAE transactions, (1982) 261-288.
[5]  E. Abdi aghdam, A. Zamzam, Study of the Effect of Engine Speed and the Operating life on Blowby in Fueled Motoring for XU7JP/L3 Engine, Journal of Mechanical Engineering, 2019; 48(4): 209-218. (In Persian)
[6]  S. Verhelst, C. Sheppard, Multi-zone thermodynamic modelling of spark-ignition engine combustion–an overview, Energy Conversion and management, 50(5) (2009) 1326-1335.
[7]  D. Patterson, G.J. VAN WYLEN, A digital computer simulation for spark-ignited engine cycles, 0148-7191, SAE Technical Paper, 1963.
[8]  N.C. Blizard, J.C. Keck, Experimental and theoretical investigation of turbulent burning model for internal combustion engines, 0148-7191, SAE Technical Paper, 1974.
[9]  R.J. Tabaczynski, C.R. Ferguson, K. Radhakrishnan, A turbulent entrainment model for spark-ignition engine combustion, SAE transactions,  (1977) 2414-2433.
[10]  F. Ma, Y. Wang, M. Wang, H. Liu, J. Wang, S. Ding, S. Zhao, Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions, International journal of hydrogen energy, 33(18) (2008) 4863-4875.
[11] J. Vancoillie, L. Sileghem, S. Verhelst, Development and validation of a quasi-dimensional model for methanol and ethanol fueled SI engines, Applied energy, 132 (2014) 412-425.
[12] Y. Zhang, J. Fu, J. Shu, M. Xie, J. Liu, Y. Yin, Use of a convenient thermodynamic model to study the effects of operating parameters on nitrogen oxides emissions for a liquefied methane fueled spark-ignition engine, Fuel, 257 (2019) 116001.
[13] M. Baratta, A. Ferrari, Q. Zhang, Multi-zone thermodynamic modeling of combustion and emission formation in CNG engines using detailed chemical kinetics, Fuel, 231 (2018) 396-403.
[14]  M. Fathi, O. Jahanian, D. Domiri Ganji, Single-zone Thermo-kinetic Modeling of Direct Injection Homogeneous Charge Compression Ignition (DI-HCCI) Engines, Journal of Mechanical Engineering, 2019; 49(3): 249-258. (In Persian)
[15] M. Sarabi, E. Abdi Aghdam, Single-Cylinder SI Engine Performance in Dual-Fuel (Gasoline-NG) Mode with Gasoline Dominant Fuel under Stoichiometric Conditions, Modares Mechanical Engineering, 20(2) (2020) 287-295. (In Persian)
[16] M. Sarabi, E.A. Aghdam, Experimental analysis of in-cylinder combustion characteristics and exhaust gas emissions of gasoline–natural gas dual-fuel combinations in a SI engine, Journal of Thermal Analysis and Calorimetry, 2019; (113):1-14.
[17] M. Metghalchi, Laminar burning velocity of isooctane-air, methane-air, and methanol-air mixtures at high temperature and pressure, Massachusetts Institute of Technology, 1977.
[18]   M. Metghalchi, J.C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combustion and flame, 48 (1982) 191-210.
[19] S. Pischinger, J.B. Heywood, A model for flame kernel development in a spark-ignition engine, in:  Symposium (international) on Combustion, Elsevier, 1991, pp. 1033-1040.
[20] S. Liao, D. Jiang, Q. Cheng, Determination of laminar burning velocities for natural gas, Fuel, 83(9) (2004) 1247-1250.
[21]  M. Baloo, B.M. Dariani, M. Akhlaghi, I. Chitsaz, Effect of iso-octane/methane blend on laminar burning velocity and flame instability, Fuel, 144 (2015) 264-273.
[22] M. Baloo, B.M. Dariani, M. Akhlaghi, M. AghaMirsalim, Effects of pressure and temperature on laminar burning velocity and flame instability of iso-octane/methane fuel blend, Fuel, 170 (2016) 235-244.
[23]  E. Abdi Aghdam, M. Sarabi, M. Mehrbod Khomeyrani, Experimental study of laminar burning velocity for dual fuel (Gasoline-NG)-Air mixture using pressure record in a spherical combustion bomb at higher primary pressure, Fuel and Combustion, 11(1) (2018) 121-134. (In Persian)
[24] M.J. Hall, F. Bracco, A study of velocities and turbulence intensities measured in firing and motored engines, 0148-7191, SAE Technical Paper, 1987.
[25]  S.B. Han, Y.J. Chung, S. Lee, Effect of engine variables on the turbulent flow of a spark ignition engine, Ksme Journal, 9(4) (1995) 492-501.
[26]  K. Atashkari, Experimental Study of Flow and Turbulence in a V-flame Burner and a SI Engine, Ph. D. thesis, Department of Mech. Eng., University of Leeds, 1997.
[27]   D. Jakubík, Exploratory Search in Digital Libraries, Masarykova univerzita, Fakulta informatiky, 2013.
[28]  G. Damköhler, Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 46(11) (1940) 601-626.
[29]  V. Zimont, Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds numbers, Combustion, Explosion and Shock Waves, 15(3) (1979) 305-311.
[30]  Ö.L. Gülder, Turbulent premixed flame propagation models for different combustion regimes, in:  Symposium (International) on Combustion, Elsevier, 1991, pp. 743-750.
[31] D. Bradley, A. Lau, M. Lawes, F. Smith, Flame stretch rate as a determinant of turbulent burning velocity, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 338(1650) (1992) 359-387.
[32]  S.R. Muppala, N.K. Aluri, F. Dinkelacker, A. Leipertz, Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa, Combustion and Flame, 140(4) (2005) 257-266..
[33]   E. Abdi Aghdam, Improvement and validation of a thermodynamic SI engine simulation code, University of Leeds, 2003.
[34]  Thermodynamics, F.M. Group, W. Annand, Heat transfer in the cylinders of reciprocating internal combustion engines, Proceedings of the Institution of Mechanical Engineers, 177(1) (1963) 973-996.
[35] Sarabi, M, Simulation and development, and validation of dual-fuel (Gasoline-Natural gas) thermodynamic multi zone SI engine code using experimental results obtained from CT300 research engine, University of Mohaghegh Ardabili, PhD thesis, Jan. 2020.
[36] D. Bradley, R. Hicks, M. Lawes, C. Sheppard, R. Woolley, The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combustion and flame, 115(1-2) (1998) 126-144.
[37]  S. Merdjani, C. Sheppard, Gasoline engine cycle simulation using the Leeds turbulent burning velocity correlations, 0148-7191, SAE Technical Paper, 1993.
[38]  E.A. Aghdam, M. Kabir, Validation of a blowby model using experimental results in motoring condition with the change of compression ratio and engine speed, Experimental Thermal and Fluid Science, 34(2) (2010) 197-209.
[39]  E. Abdi Aghdam, M. Ataee Tarzanagh, The Effect of Burned Residual Gases on Optimum Ignition Timing using Skip Fire Technique, The Journal of Engine Research, 50(50) (2018) 67-75. (In Persian)
[40]  C. Robinet, P. Higelin, Crossed Study of Residual Gas Rate-Firing Device for a Better Understanding of SI Engines Cycle-to-Cycle Variations, 0148-7191, SAE Technical Paper, 1998.
[41]  G.M. Rassweiler, L. Withrow, Motion pictures of engine flames correlated with pressure cards, SaE transactions, (1938) 185-204.‏
[42] W.C. Nadaleti, G. Przybyla, P. Belli Filho, S. Souza, Methane-hydrogen fuel blends for SI engines in Brazilian public transport: Efficiency and pollutant emissions, International Journal of Hydrogen Energy, 42(49) (2017) 29585-29596.
[43] Z. Chen, H. Yuan, T.M. Foong, Y. Yang, M. Brear, The impact of nitric oxide on knock in the octane rating engine, Fuel, 235 (2019) 495-503.
[44] A. Djouadi, F. Bentahar, Combustion study of a spark-ignition engine from pressure cycles, Energy, 101 (2016) 211-217.