[1] Z. Yang, S. Zhou, J. Zu, D. Inman, High-performance piezoelectric energy harvesters and their applications, Joule, 2(4) (2018) 642-697.
[2] J. Briscoe, S. Dunn, Piezoelectric nanogenerators–a review of nanostructured piezoelectric energy harvesters, Nano Energy, 14 (2015) 15-29.
[3] S.-G. Kim, S. Priya, I. Kanno, Piezoelectric MEMS for energy harvesting, MRS bulletin, 37(11) (2012) 1039-1050.
[4] L. Tang, Y. Yang, C.K. Soh, Toward broadband vibration-based energy harvesting, Journal of intelligent material systems and structures, 21(18) (2010) 1867-1897.
[5] A. Khan, Z. Abas, H.S. Kim, I.-K. Oh, Piezoelectric thin films: an integrated review of transducers and energy harvesting, Smart Materials and Structures, 25(5) (2016) 053002.
[6] K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Materials and Structures, 23(3) (2014) 033001.
[7] D. Guyomar, M. Lallart, Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation, Micromachines, 2(2) (2011) 274-294.
[8] C. Wang, Z. Wang, T.-L. Ren, Y. Zhu, Y. Yang, X. Wu, H. Wang, H. Fang, L. Liu, A Micromachined Piezoelectric Ultrasonic Transducer Operating in d33 Mode Using Square Interdigital Electrodes, IEEE sensors journal, 7(7) (2007) 967-976.
[9] Y. Jeon, R. Sood, J.-H. Jeong, S.-G. Kim, MEMS power generator with transverse mode thin film PZT, Sensors and Actuators A: Physical, 122(1) (2005) 16-22.
[10] W. Choi, Y. Jeon, J.-H. Jeong, R. Sood, S.-G. Kim, Energy harvesting MEMS device based on thin film piezoelectric cantilevers, Journal of Electroceramics, 17(2-4) (2006) 543-548.
[11] C. Bowen, L. Nelson, R. Stevens, M. Cain, M. Stewart, Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites, Journal of Electroceramics, 16(4) (2006) 263-269.
[12] C. Mo, S. Kim, W.W. Clark, Theoretical analysis of energy harvesting performance for unimorph piezoelectric benders with interdigitated electrodes, Smart Materials and Structures, 18(5) (2009) 055017.
[13] R.R. Knight, C. Mo, W.W. Clark, MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam, Journal of electroceramics, 26(1-4) (2011) 14-22.
[14] M. Kim, J. Dugundji, B.L. Wardle, Effect of electrode configurations on piezoelectric vibration energy harvesting performance, Smart Materials and Structures, 24(4) (2015) 045026.
[15] S. Du, Y. Jia, S.-T. Chen, C. Zhao, B. Sun, E. Arroyo, A.A. Seshia, A new electrode design method in piezoelectric vibration energy harvesters to maximize output power, Sensors and Actuators A: Physical, 263 (2017) 693-701.
[16] S. Lee, B.D. Youn, A design and experimental verification methodology for an energy harvester skin structure, Smart Materials and Structures, 20(5) (2011) 057001.
[17] A. Erturk, P.A. Tarazaga, J.R. Farmer, D.J. Inman, Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams, Journal of Vibration and Acoustics, 131(1) (2009) 011010.
[18] S. Lee, B.D. Youn, B.C. Jung, Robust segment-type energy harvester and its application to a wireless sensor, Smart Materials and Structures, 18(9) (2009) 095021.
[19] C.J. Rupp, A. Evgrafov, K. Maute, M.L. Dunn, Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells, Journal of Intelligent Material Systems and Structures, 20(16) (2009) 1923-1939.
[20] M. Jabbari, The effect of strain nodes on the energy harvesting of the cantilever piezoelectric beam with the vibration mode excitation, Modares Mechanical Engineering, 17(10) (2017) 65-72.
[21] N.E. Du Toit, Modeling and design of a MEMS piezoelectric vibration energy harvester, Massachusetts Institute of Technology, 2005.
[22] N. Elvin, A. Erturk, Advances in energy harvesting methods, Springer Science & Business Media, 2013.
[23] A. Toprak, O. Tigli, Interdigitated-electrode-based mems-scale piezoelectric energy harvester modeling and optimization using finite element method, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 60(10) (2013) 2162-2174.
[24] A.I.S. 176-, IEEE standard on piezoelectricity, in, IEEE New York, 1987.
[25] N.E. DuToit, B.L. Wardle, Experimental verification of models for microfabricated piezoelectric vibration energy harvesters, AIAA journal, 45(5) (2007) 1126-1137.
[26] N.W. Hagood, W.H. Chung, A. Von Flotow, Modelling of piezoelectric actuator dynamics for active structural control, Journal of intelligent material systems and structures, 1(3) (1990) 327-354.
[27] M. Kim, M. Hoegen, J. Dugundji, B.L. Wardle, Modeling and experimental verification of proof mass effects on vibration energy harvester performance, Smart Materials and Structures, 19(4) (2010) 045023.
[28] N. James, U. Lafont, S. Van der Zwaag, W. Groen, Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT–ionomer composites, Smart Materials and Structures, 23(5) (2014) 055001.
[29] Q. Li, M.-H. Zhang, Z.-X. Zhu, K. Wang, J.-S. Zhou, F.-Z. Yao, J.-F. Li, Poling engineering of (K, Na) NbO 3-based lead-free piezoceramics with orthorhombic–tetragonal coexisting phases, Journal of Materials Chemistry C, 5(3) (2017) 549-556.
[30] J. Wu, X. Gao, Y. Yu, J. Yang, Z. Chu, A.A. Bokov, Z.-G. Ye, S. Dong, Quantitative studies of domain evolution in tetragonal BS–PT ceramics in electric poling and thermal depoling processes, Journal of Materials Chemistry C, 7(15) (2019) 4517-4526.