1. S. Smolentsev, N. Morley, M. Abdou, R. Munipalli, R. Moreau, Current approaches to modeling MHD flows in the dual coolant lead lithium blanket, Magnetohydrodynamics, 42(2-3) (2006) 225-236.
2. C.N. Kim, A.H. Hadid, M.A. Abdou, Development of a computational method for the full solution of MHD flow in fusion blankets, Fusion Engineering and Design, 8 (1989) 265-270.
3. X. Wang, E. Mogahed, I. Sviatoslavsky, MHD, heat transfer and stress analysis for the ITER self-cooled blanket design, Fusion Engineering and Design, 24(4) (1994) 389-401.
4. I.R. Kirillov, C.B. Reed, L. Barleon, K. Miyazaki, Present understanding of MHD and heat transfer phenomena for liquid metal blankets, Fusion Engineering and Design, 27 (1995) 553-569.
5. K. Starke, L. Bühler, S. Horanyi, Experimental MHD–flow analyses in a mock-up of a test blanket module for ITER, Fusion Engineering and Design, 84(7-11) (2009) 1794-1798.
6. S. Malang, M. Tillack, C. Wong, N. Morley, S. Smolentsev, Development of the lead lithium (DCLL) blanket concept, Fusion Science and Technology, 60(1) (2011) 249-256.
7. F.C. Li, D. Sutevski, S. Smolentsev, M. Abdou, Experimental and numerical studies of pressure drop in PbLi flows in a circular duct under non-uniform transverse magnetic field, Fusion Engineering and Design, 88(11) (2013) 3060-3071.
8. L. Bühler, C. Mistrangelo, J. Konys, R. Bhattacharyay, Q. Huang, D. Obukhov, S. Smolentsev, M. Utili, Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets, Fusion Engineering and Design, 100 (2015) 55-64.
9. I. Fernández-Berceruelo, D. Rapisarda, I. Palermo, L. Maqueda, D. Alonso, T. Melichar, O. Frýbort, L. Vála, Á. Ibarra, Thermal-hydraulic design of a DCLL breeding blanket for the EU DEMO, Fusion Engineering and Design, 124 (2017) 822-826.
10. L. Bühler, C. Mistrangelo, Pressure drop and velocity changes in MHD pipe flows due to a local interruption of the insulation, Fusion Engineering and Design, 127 (2018) 185-191.
11. H. Hulin, Y. Shimou, A. Fawad, Effect of nano-coating on corrosion behaviors of DCLL blanket channel, International Journal of Heat and Mass Transfer, 141 (2019) 444-456.
12. C. Soto, S. Smolentsev, C. García-Rosales, Mitigation of MHD phenomena in DCLL blankets by Flow Channel Inserts based on a SiC-sandwich material concept, Fusion Engineering and Design, 151 (2020) 111381.
13. S.I. Sidorenko, A.Y. Shishko, Variational method of calculation of MHD flows in channels with large aspect ratios and conducting walls, Magnetohydrodynamics, 27(4) (1991) 437-445.
14. Z.H. Liu, L. Chen, M.J. Ni, N.M. Zhang, Effects of magnetohydrodynamic mixed convection on fluid flow and structural stresses in the DCLL blanket, International Journal of Heat and Mass Transfer, 135 (2019) 847-859.
15. S.J. Xu, M. J. Ni, Direct simulation of MHD flows in dual-coolant liquid metal fusion blanket using a consistent and conservative scheme, Theoretical and Applied Mechanics Letters 1.1 (2011) 012006.
16. E.M. De Les Valls, L. Sedano, L. Batet, I. Ricapito, A. Aiello, O. Gastaldi, F. Gabriel, Lead–lithium eutectic material database for nuclear fusion technology, Journal of Nuclear Materials, 376(3) (2008) 353-357.