بکارگیری تئوری الاستیسیته گرادیان کرنشی در بررسی اثر اندازه بر خواص الاستیک نانولوله تک جداره کربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

2 کارشناس ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

در این مقاله تأثیر اثر اندازه روی خواص الاستیک نانولوله‌های تک‌جداره کربنی با استفاده از تئوری الاستیسیته گرادیان کرنشی مورد بررسی قرار گرفت. بدین منظور از مدل‌های مکانیکی نظیر میله تحت کشش، نیز تیر اویلر-برنولی ومیله تحت پیچش استفاده گردید. مدل میله تحت کشش در تحقیق حاضر پایه‌گذاری گردید. مدل تیر اویلر-برنولی از منابع موجود استخراج و شرایط مرزی حاکم بر تیر فوق در تحقیق حاضر اصلاح گردید. ضمنا" مدل میله تحت پیچش در تحقیق حاضر پایه‌گذاری گردید. در تحقیق حاضر معادله ساختاری برای حالت یک‌بعدی کاهش یافته و استخراج گردید. معادلات حاکم و شرایط مرزی با استفاده از روش انرژی و حساب تغییرات استخراج شد. سپس از معادلات ساختاری تئوری الاستیسیته گرادیان کرنشی استفاده شد تا خواص الاستیک وابسته به اندازه، بر اساس تنش مؤثر محاسبه گردند. نتایج حکایت از آن دارد که طول نانولوله کربن روی میزان مدول یانگ در مقایسه با مدول برشی تأثیر بیشتری دارد و با کاهش طول نانولوله مدول یانگ نیز کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Strain Gradient Elasticity in Analysis of Elastic Properties of Single Walled Carbon Nanotubes

نویسندگان [English]

  • Mahmood Shokrieh 1
  • Iman Zibaei 2
1
2
چکیده [English]

In this paper, the size effect on elastic properties of single- walled nanotubes is evaluated via the strain gradient elasticity approach. For this purpose, rod, torsion bar and Euler- Bernoulli beam models are used. The tension rod model is developed in the present study. The Euler- Bernoulli beam model is utilized and the boundary conditions are modified in the present research. In addition, a model for the rod under torsion is developed. Afterwards, by using the constitutive relation in strain gradient elasticity, the size- dependent elastic properties of carbon nanotube are achieved effectively. The results show that the length of the carbon nanotube is more effective on the Young modulus in comparison with that of on shear modulus and when the length of nanotube decreases, the Young modulus decreases similarly.

کلیدواژه‌ها [English]

  • Strain Gradient Elasticity
  • Carbon Nanotube
  • Size effect
  • Elastic Properties
[1] Iijima S., “Helical microtubules of graphitic carbon”,Nature, Vol 354, pp. 56- 58, 1991.
[2] Lau K. T., “Interfacial bonding characteristics of nanotube/polymer composites”, Chem. Phys. Lett.,Vol 370, pp. 399- 405, 2003.
[3] Morales R. L. F., Toxvaerd, S., “Computer Simulation of a Phase Transition at Constant Temperature and
Pressure”, Physical Review A, Vol 34, pp. 1495- 1498,1986.
[4] Mindlin R. D., “Micro-structure in linear elasticity”,Archive for Rational Mechanics and Analysis, Vol 16, pp.
51- 78, 1964.
[5] Kröner E., “On the physical reality of torque stresses in continuum mechanics”, International Journal of Engineering Science, Vol 1, pp. 261- 278, 1963.
[6] Mindlin, R. D., Eshel, N. N., “On First Strain-Gradient theories in Linear Elasticty”, International Journal of
Solids and Structures, Vol 4, pp. 109- 124, 1968.
[7] Askes, H., Aifantis E. C., “Gradient elasticity and flexural wave dispersion in carbon nanotubes”, Physical Review B, Vol 80, pp. 195412- 195418, 2009.
[8] Wang L., “Wave propagation of fluid-conveying single-walled carbon nanotubes”, Computational Materials Science, Vol 49, pp. 761- 766, 2010.
[9] Wang B. L., Hoffman M.; Yu A. B., “Mechanics of Materials Buckling analysis of embedded nanotubes
using gradient continuum theory”, Mechanics of Materials, Vol 45, pp. 52- 60, 2012.
[10] Ansari R., Gholami R., Rouhi H., “Various gradient elasticity theories in predicting vibrational response
of single-walled carbon nanotubes with arbitrary boundary conditions”, Journal of Vibration and Control Vol 19, No.5, pp. 708- 719, 2012.
[11] Aifantis E. C., “On the role of gradients in the localization of deformation and fracture” International
Journal of Engineering Science, Vol 30, pp. 1279-1299, 1992.
[12] Muhlhaus H. B., Oka F., “Dispersion and wave propagation in discrete and continuous models for granular materials”, International Journal of Solids and Structures,Vol 33, No. 19, pp. 2841- 2858, 1996.
[13] Sundararaghavan V., and Waas A., “Non-local continuum modeling of carbon nanotubes: Physical
interpretation of non-local kernels using atomistic simulations”, Journal of the Mechanics and Physics of
Solids, Vol 59, No. 6, pp. 1191- 1203, 2011.
[14] Hu N., Fukunaga H., Lu C., Kameyama M., Yan B., and A P. R. S., “Prediction of elastic properties of carbon nanotube reinforced composites Prediction of elastic properties of carbon nanotube reinforced composites”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp.1685- 1710, 2005.
[15] K.A. Lazopoulos, A.K. Lazopoulos, “Bending and buckling of thin strain gradient elastic beams”, European Journal of Mechanics - A/Solids Vol 29, No.5, pp. 837- 843, 2010.