شبیه‌سازی چندمقیاسی جریان در محیط متخلخل شکاف‌دار با استفاده از شبکه‌های بی‌سازمان

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

در این مقاله برای شبیه‌سازی جریان در محیط متخلخل شکاف‌دار، روش حجم محدود چند مقیاسی در شبکه‌های بی‌سازمان توسعه داده شده‌است. بدین منظور، الگوریتم‌هایی برای تولید شبکه‌های درشت مقیاس بی‌سازمان برای دامنه ماتریس و شبکه شکاف‌ها به صورت مستقل از یکدیگر ارائه شده‌است. الگوریتم‌های ارائه‌شده برای تولید شبکه‌های بی‌سازمان درشت مقیاس، قابلیت تطبیق بر اساس تغییرات محلی میدان نفوذپذیری را دارند. تطبیق شبکه‌های بی‌سازمان بر اساس میدان نفوذپذیری، تأثیر قابل توجهی بر بهبود نتایج حل چند مقیاسی در میدان‌های نفوذپذیری به شدت ناهمگن دارد. به‌کارگیری شبکه‌های بی‌سازمان تطبیقی در محیط متخلخل شکاف‌دار برای نخستین بار در این پژوهش صورت گرفته‌است. سلول‌های شبکه درشت مقیاس به گونه‌ای تولید می‌شوند که از تغییرات شدید مقادیر نفوذپذیری در امتداد مرزهای آن و همچنین از قرارگرفتن گره‌های شبکه درشت مقیاس در نواحی با نفوذپذیری پایین جلوگیری شود. برای کاهش هزینه‌های محاسباتی، کوپل شکاف-ماتریس فقط برای محاسبه توابع پایه در دامنه ماتریس در نظر گرفته‌شده‌است. به منظور ارزیابی الگوریتم‌های ارائه‌شده، مسئله‌های مختلف در حالت دو‌بعدی طراحی و حل شده‌اند. در پایان نشان داده‌شده‌است که روش حجم محدود چندمقیاسی با الگوریتم‌های ارائه‌شده یک روش عددی کارآمد برای شبیه‌سازی جریان در محیط متخلخل شکاف‌دار ناهمگن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multiscale simulation of flow in fractured porous media using unstructured grids

نویسنده [English]

  • Zahra Mehrdoost
Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

In this paper for flow simulation in fractured porous media, a multiscale finite volume method on unstructured grids is developed. To this end, algorithms for generating coarse scale unstructured grids for the matrix and fracture networks are presented independently. The presented algorithms for generating coarse scale unstructured grids are adaptable based on local changes in permeability field. Unstructured grid adaption based on permeability field has significant effect on improving the multiscale solution results in highly heterogeneous permeability fields. For the first time in this research, applying adaptive unstructured grids in fractured porous media is done. Coarse scale grid cells are generated such that strong variation of permeability along their boundaries and also the placement of coarse scale vertices in low permeability region are prevented. To reduce the computational cost, fracture-matrix coupling is considered only for the calculation of basis functions in the matrix domain. In order to evaluate the proposed algorithms, various 2D test cases are designed and solved. Finally, it is shown that the multiscale finite volume method with the proposed algorithms is an efficient numerical method for flow simulation in heterogeneous fractured porous media.

کلیدواژه‌ها [English]

  • Multiscale finite volume method
  • Fractured porous media
  • Unstructured grids
  • Discrete fracture model
[1] J. Noorishad, M. Mehran, An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resources Research, 18(3) (1982) 588-596.
[2] L. Li, S.H. Lee, Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reservoir Evaluation & Engineering, 11(04) (2008) 750-758.
[3] H. Hajibeygi, D. Karvounis, P. Jenny, A hierarchical fracture model for the iterative multiscale finite volume method, Journal of Computational Physics, 230(24) (2011) 8729-8743.
[4] A. Moinfar, A. Varavei, K. Sepehrnoori, R. T. Johns, Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs, SPE Journal, 19 (2014) 289–303.
[5] Y. Efendiev, S. Lee, G. Li, J. Yao, N. Zhang, Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method, GEM-International Journal on Geomathematics, 6(2) (2015) 141-162.
[6] M. Karimi-Fard, L.J. Durlofsky, K. Aziz, An efficient discrete fracture model applicable for general purpose reservoir simulators, in:  SPE Reservoir Simulation Symposium, SPE Journal, 9 (2004) 227–236.
[7] V. Reichenberger, H. Jakobs, P. Bastian, R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Advances in water resources, 29(7) (2006) 1020-1036.
[8] S. Geiger-Boschung, S.K. Matthäi, J. Niessner, R. Helmig, Black-oil simulations for three-component, three-phase flow in fractured porous media, SPE journal, 14(02) (2009) 338-354.
[9] R. Ahmed, M.G. Edwards, S. Lamine, B.A. Huisman, M. Pal, Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, Journal of Computational Physics, 284 (2015) 462-489.
[10] T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of computational physics, 134(1) (1997) 169-189.
[11] P. Jenny, S. Lee, H.A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, 187(1) (2003) 47-67.
[12] Z. Chen, T. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Mathematics of Computation, 72(242) (2003) 541-576.
[13] I. Sokolova, M.G. Bastisya, H. Hajibeygi, Multiscale finite volume method for finite-volume-based simulation of poroelasticity, Journal of Computational Physics, 379 (2019) 309-324.
[14] P. Jenny, S.H. Lee, H.A. Tchelepi, Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, Journal of Computational Physics, 217(2) (2006) 627-641.
[15] H. Hajibeygi, P. Jenny, Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media, Journal of Computational Physics, 228(14) (2009) 5129-5147.
[16] I. Lunati, P. Jenny, A multiscale finite-volume method for three-phase flow influenced by gravity, in:  Proceedings of XVI international conference on computational methods in water resources (CMWR XVI), Copenhagen, Denmark, 2006, pp. 1-8.
 [17] S. Lee, C. Wolfsteiner, H. Tchelepi, Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity, Computational Geosciences, 12(3) (2008) 351-366.
[18] I. Lunati, P. Jenny, Multiscale finite-volume method for density-driven flow in porous media, Computational Geosciences, 12(3) (2008) 337-350.
[19] M. Presho, M. Hill, A conservative generalized multiscale finite volume/element method for modeling two-phase flow with capillary pressure, Journal of Computational and Applied Mathematics,  (2020) 113026.
[20] C. Wolfsteiner, S.H. Lee, H.A. Tchelepi, Well modeling in the multiscale finite volume method for subsurface flow simulation, Multiscale Modeling & Simulation, 5(3) (2006) 900-917.
[21] P. Jenny, I. Lunati, Modeling complex wells with the multi-scale finite-volume method, Journal of Computational Physics, 228(3) (2009) 687-702.
[22] H. Hajibeygi, G. Bonfigli, M.A. Hesse, P. Jenny, Iterative multiscale finite-volume method, Journal of Computational Physics, 227(19) (2008) 8604-8621.
[23] I. Lunati, M. Tyagi, S.H. Lee, An iterative multiscale finite volume algorithm converging to the exact solution, Journal of Computational Physics, 230(5) (2011) 1849-1864.
[24] H. Zhou, H.A. Tchelepi, Operator-based multiscale method for compressible flow, SPE Journal, 13 (2008) 267–273.
[25] Y. Wang, H. Hajibeygi, H.A. Tchelepi, Algebraic multiscale solver for flow in heterogeneous porous media, Journal of Computational Physics, 259 (2014) 284-303.
[26] O. Møyner, K.A. Lie, The multiscale finite volume method on unstructured grids, SPE Journal, 19 (2014) 816–831.
[27] O. Møyner, K.A. Lie, A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, Journal of Computational Physics, 304 (2016) 46–71.
[28] S. Bosma, H. Hajibeygi, M. Tene, H.A. Tchelepi, Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM), Journal of Computational Physics, 351 (2017) 145-164.
[29] T. Sandve, E. Keilegavlen, J. Nordbotten, Physics-based preconditioners for flow in fractured porous media, Water Resources Research, 50(2) (2014) 1357–1373.
[30] M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS), Journal of Computational Physics, 321 (2016) 819-845.
[31] S. Shah, O. Møyner, M. Tene, K.-A. Lie, H. Hajibeygi, The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), Journal of Computational Physics, 318 (2016) 36-57.
[32] A.P. Giotis, K.C. Giannakoglou, An unstructured grid partitioning method based on genetic algorithms, Advances in Engineering Software, 29(2) (1998) 129-138.
[33] P. Korošec, J. Šilc, B. Robič, Solving the mesh-partitioning problem with an ant-colony algorithm, Parallel computing, 30(5-6) (2004) 785-801.
[34] P. Liu , C. F. Wang, A bubble-inspired algorithm for finite element mesh partitioning, International Journal of Numerical Methods in Engineering, 93(7) (2013) 770–794.
[35] F. Glover, M. Laguna, TabuSearchKluwer Academic Publishers, Boston, MA,  (1997).
[36] M.A. Christie, M.J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reservoir Evaluation & Engineering, 4(4) (2001) 308-317.