[1] J. Noorishad, M. Mehran, An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resources Research, 18(3) (1982) 588-596.
[2] L. Li, S.H. Lee, Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reservoir Evaluation & Engineering, 11(04) (2008) 750-758.
[3] H. Hajibeygi, D. Karvounis, P. Jenny, A hierarchical fracture model for the iterative multiscale finite volume method, Journal of Computational Physics, 230(24) (2011) 8729-8743.
[4] A. Moinfar, A. Varavei, K. Sepehrnoori, R. T. Johns, Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs, SPE Journal, 19 (2014) 289–303.
[5] Y. Efendiev, S. Lee, G. Li, J. Yao, N. Zhang, Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method, GEM-International Journal on Geomathematics, 6(2) (2015) 141-162.
[6] M. Karimi-Fard, L.J. Durlofsky, K. Aziz, An efficient discrete fracture model applicable for general purpose reservoir simulators, in: SPE Reservoir Simulation Symposium, SPE Journal, 9 (2004) 227–236.
[7] V. Reichenberger, H. Jakobs, P. Bastian, R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Advances in water resources, 29(7) (2006) 1020-1036.
[8] S. Geiger-Boschung, S.K. Matthäi, J. Niessner, R. Helmig, Black-oil simulations for three-component, three-phase flow in fractured porous media, SPE journal, 14(02) (2009) 338-354.
[9] R. Ahmed, M.G. Edwards, S. Lamine, B.A. Huisman, M. Pal, Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, Journal of Computational Physics, 284 (2015) 462-489.
[10] T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of computational physics, 134(1) (1997) 169-189.
[11] P. Jenny, S. Lee, H.A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, 187(1) (2003) 47-67.
[12] Z. Chen, T. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Mathematics of Computation, 72(242) (2003) 541-576.
[13] I. Sokolova, M.G. Bastisya, H. Hajibeygi, Multiscale finite volume method for finite-volume-based simulation of poroelasticity, Journal of Computational Physics, 379 (2019) 309-324.
[14] P. Jenny, S.H. Lee, H.A. Tchelepi, Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, Journal of Computational Physics, 217(2) (2006) 627-641.
[15] H. Hajibeygi, P. Jenny, Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media, Journal of Computational Physics, 228(14) (2009) 5129-5147.
[16] I. Lunati, P. Jenny, A multiscale finite-volume method for three-phase flow influenced by gravity, in: Proceedings of XVI international conference on computational methods in water resources (CMWR XVI), Copenhagen, Denmark, 2006, pp. 1-8.
[17] S. Lee, C. Wolfsteiner, H. Tchelepi, Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity, Computational Geosciences, 12(3) (2008) 351-366.
[18] I. Lunati, P. Jenny, Multiscale finite-volume method for density-driven flow in porous media, Computational Geosciences, 12(3) (2008) 337-350.
[19] M. Presho, M. Hill, A conservative generalized multiscale finite volume/element method for modeling two-phase flow with capillary pressure, Journal of Computational and Applied Mathematics, (2020) 113026.
[20] C. Wolfsteiner, S.H. Lee, H.A. Tchelepi, Well modeling in the multiscale finite volume method for subsurface flow simulation, Multiscale Modeling & Simulation, 5(3) (2006) 900-917.
[21] P. Jenny, I. Lunati, Modeling complex wells with the multi-scale finite-volume method, Journal of Computational Physics, 228(3) (2009) 687-702.
[22] H. Hajibeygi, G. Bonfigli, M.A. Hesse, P. Jenny, Iterative multiscale finite-volume method, Journal of Computational Physics, 227(19) (2008) 8604-8621.
[23] I. Lunati, M. Tyagi, S.H. Lee, An iterative multiscale finite volume algorithm converging to the exact solution, Journal of Computational Physics, 230(5) (2011) 1849-1864.
[24] H. Zhou, H.A. Tchelepi, Operator-based multiscale method for compressible flow, SPE Journal, 13 (2008) 267–273.
[25] Y. Wang, H. Hajibeygi, H.A. Tchelepi, Algebraic multiscale solver for flow in heterogeneous porous media, Journal of Computational Physics, 259 (2014) 284-303.
[26] O. Møyner, K.A. Lie, The multiscale finite volume method on unstructured grids, SPE Journal, 19 (2014) 816–831.
[27] O. Møyner, K.A. Lie, A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, Journal of Computational Physics, 304 (2016) 46–71.
[28] S. Bosma, H. Hajibeygi, M. Tene, H.A. Tchelepi, Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM), Journal of Computational Physics, 351 (2017) 145-164.
[29] T. Sandve, E. Keilegavlen, J. Nordbotten, Physics-based preconditioners for flow in fractured porous media, Water Resources Research, 50(2) (2014) 1357–1373.
[30] M. Ţene, M.S. Al Kobaisi, H. Hajibeygi, Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS), Journal of Computational Physics, 321 (2016) 819-845.
[31] S. Shah, O. Møyner, M. Tene, K.-A. Lie, H. Hajibeygi, The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), Journal of Computational Physics, 318 (2016) 36-57.
[32] A.P. Giotis, K.C. Giannakoglou, An unstructured grid partitioning method based on genetic algorithms, Advances in Engineering Software, 29(2) (1998) 129-138.
[33] P. Korošec, J. Šilc, B. Robič, Solving the mesh-partitioning problem with an ant-colony algorithm, Parallel computing, 30(5-6) (2004) 785-801.
[34] P. Liu , C. F. Wang, A bubble-inspired algorithm for finite element mesh partitioning, International Journal of Numerical Methods in Engineering, 93(7) (2013) 770–794.
[35] F. Glover, M. Laguna, TabuSearchKluwer Academic Publishers, Boston, MA, (1997).
[36] M.A. Christie, M.J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reservoir Evaluation & Engineering, 4(4) (2001) 308-317.