[1] X. Ju, C. Xu, X. Han, X. Du, G. Wei, Y. Yang, A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology, Applied energy, 187 (2017) 534-563.
[2] F. Crisostomo, N. Hjerrild, S. Mesgari, Q. Li, R.A. Taylor, A hybrid PV/T collector using spectrally selective absorbing nanofluids, Applied energy, 193 (2017) 1-14.
[3] N.E. Hjerrild, S. Mesgari, F. Crisostomo, J.A. Scott, R. Amal, R.A. Taylor, Spectrum splitting using gold and silver nanofluids for photovoltaic/thermal collectors, in: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), IEEE, 2016, pp. 3518-3523.
[4] N.E. Hjerrild, J.A. Scott, R. Amal, R.A. Taylor, Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications, Renewable Energy, 120 (2018) 266-274.
[5] J. Jin, D. Jing, A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application, Solar Energy, 155 (2017) 51-61.
[6] N. Brekke, J. Dale, D. DeJarnette, P. Hari, M. Orosz, K. Roberts, E. Tunkara, T. Otanicar, Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption, Renewable Energy, 123 (2018) 683-693.
[7] T. Otanicar, J. Dale, M. Orosz, N. Brekke, D. DeJarnette, E. Tunkara, K. Roberts, P. Harikumar, Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures, Applied energy, 228 (2018) 1531-1539.
[8] L. Huaxu, W. Fuqiang, L. Dong, Z. Jie, T. Jianyu, Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems, International Journal of Heat and Mass Transfer, 128 (2019) 668-678.
[9] M. Du, G. Tang, T. Wang, Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing, Solar Energy, 183 (2019) 501-511.
[10] Y. He, Y. Hu, H. Li, An Ag@ TiO2/ethylene glycol/water solution as a nanofluid-based beam splitter for photovoltaic/thermal applications in cold regions, Energy Conversion and Management, 198 (2019) 111838.
[11] X. Han, X. Chen, Q. Wang, S.M. Alelyani, J. Qu, Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications, Solar Energy, 177 (2019) 387-394.
[12] M. Islam, A. Pandey, M. Hasanuzzaman, N. Rahim, Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems, Energy Conversion and Management, 126 (2016) 177-204.
[13] S. Chandel, T. Agarwal, Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems, Renewable and Sustainable Energy Reviews, 73 (2017) 1342-1351.
[14] H. Manz, P. Egolf, P. Suter, A. Goetzberger, TIM–PCM external wall system for solar space heating and daylighting, Solar energy, 61(6) (1997) 369-379.
[15] D. Buddhi, S. Sharma, Measurements of transmittance of solar radiation through stearic acid: a latent heat storage material, Energy conversion and management, 40(18) (1999) 1979-1984.
[16] F. Goia, M. Zinzi, E. Carnielo, V. Serra, Spectral and angular solar properties of a PCM-filled double glazing unit, Energy and Buildings, 87 (2015) 302-312.
[17] J.C. Fan, Theoretical temperature dependence of solar cell parameters, Solar cells, 17(2-3) (1986) 309-315.
[18] T. Otanicar, R. Taylor, C. Telang, Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters, Journal of Renewable and Sustainable Energy, 5(3) (2013) 033124.
[19] T. Chow, Performance analysis of photovoltaic-thermal collector by explicit dynamic model, Solar Energy, 75(2) (2003) 143-152.
[20] J.A. Duffie, W.A. Beckman, Solar engineering of thermal processes, fourth editio, in, John Wiley & Sons, 2013.
[21] T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, 2011.
[22] K. Hollands, T. Unny, G. Raithby, L. Konicek, Free convective heat transfer across inclined air layers, (1976).
[23] R.K. Shah, A.L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, Academic press, 2014.
[24] M. Muhieddine, E. Canot, R. March, Various approaches for solving problems in heat conduction with phase change, (2009).
[25] F. Goia, M. Perino, M. Haase, A numerical model to evaluate the thermal behaviour of PCM glazing system configurations, Energy and Buildings, 54 (2012) 141-153.
[26] J.R. Howell, M.P. Menguc, R. Siegel, Thermal radiation heat transfer, CRC press, 2015.
[27] M.F. Modest, Radiative heat transfer, Academic press, 2013.
[28] H. Weinläder, Optische Charakterisierung von Latentwärmespeichermaterialien zur Tageslichtnutzung, (2003).
[29] A.K. González-Alcalde, E.R. Méndez, E. Terán, F.L. Cuppo, J. Olivares, A. García-Valenzuela, Reflection of diffuse light from dielectric one-dimensional rough surfaces, JOSA A, 33(3) (2016) 373-382.
[30] G. Kortüm, Reflectance spectroscopy: principles, methods, applications, Springer Science & Business Media, 2012.
[31] A. Abdelrazik, F. Al-Sulaiman, R. Saidur, Optical behavior of a water/silver nanofluid and their influence on the performance of a photovoltaic-thermal collector, Solar Energy Materials and Solar Cells, 201 (2019) 110054.
[32] C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, 2008.
[33] T. Mittal, S. Saroha, V. Bhalla, V. Khullar, H. Tyagi, R.A. Taylor, T.P. Otanicar, Numerical study of solar photovoltaic/thermal (PV/T) hybrid collector using nanofluids, in: ASME 2013 4th international conference on micro/nanoscale heat and mass transfer, American Society of Mechanical Engineers Digital Collection, 2013.
[34] R.A. Taylor, T. Otanicar, G. Rosengarten, Nanofluid-based optical filter optimization for PV/T systems, Light: Science & Applications, 1(10) (2012) e34-e34.
[35] N. Aste, C. del Pero, F. Leonforte, Water flat plate PV–thermal collectors: a review, Solar Energy, 102 (2014) 98-115.
[36] R. Petela, Exergy of heat radiation, Journal of Heat Transfer, 86(2) (1964) 187-192.
[37] A. Farzanehnia, M. Sardarabadi, Exergy in Photovoltaic/Thermal Nanofluid-Based Collector Systems, in: Exergy and Its Application-Toward Green Energy Production and Sustainable Environment, IntechOpen, 2019.
[38] Y. Cui, Q. Zhu, Study of photovoltaic/thermal systems with MgO-water nanofluids flowing over silicon solar cells, in: 2012 Asia-Pacific Power and Energy Engineering Conference, IEEE, 2012, pp. 1-4.