[1] C. Tiris, N. Ozbalta, M. Tiris, I. Dincer, Experimental testing of a new solar dryer, International Journal of Energy Research, 18 (1994) 483-490.
[2] A. El-Sebaii, A. Al-Ghamdi, F. Al-Hazmi, A.S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Applied Energy, 86(7-8) (2009) 1187-1195.
[3] K. Lutz, W. Mühlbauer, J. Müller, G. Reisinger, Development of a multi-purpose solar crop dryer for arid zones, Solar & Wind Technology, 4(4) (1987) 417-424.
[4] P. Barnwal, G.N. Tiwari, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study, Solar Energy, 82 (2008) 1131-1144.
[5] F. Berroug, E. Lakhal, M. El Omari, M. Faraji, H. El Qarnia, Thermal performance of a greenhouse with a phase change material north wall, Energy and Buildings, 43(11) (2011) 3027-3035.
[6] A. Elkhadraoui, S. Kooli, I. Hamdi, A. Farhat, Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape, Renewable Energy, 77 (2015) 1-8.
[7] S. Tiwari, G.N. Tiwari, Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer, Energy, 114 (2016) 155-164.
[8] S. Tiwari, G.N. Tiwari, I.M. Al-Helal, Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer, Solar Energy, 133 (2016) 421-428.
[9] N. Mehla, A. Yadav, Energy and exergy analysis of a PCM-based solar powered winter air conditioning using desiccant wheel during nocturnal, International Journal of Sustainable Engineering, 11(1) (2018) 54-64.
[10] E. Baniasadi, S. Ranjbar, O. Boostanipour, Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage, Renewable Energy, 112 (2017) 143-150.
[11] W. Wang, M. Li, R.H.E. Hassanien, Y. Wang, L. Yang, Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango, Applied Thermal Engineering, 134 (2018) 310-321.
[12] V.M. Swami, A.T. Autee, T. Anil, Experimental analysis of solar fish dryer using phase change material, Journal of Energy Storage, 20 (2018) 310-315.
[13] A. Bhardwaj, R. Kumar, R. Chauhan, Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region, Solar Energy, 177 (2019) 395-407.
[14] M. Simo-Tagne, A. Zoulalian, R. Rémond, Y. Rogaume, Mathematical modelling and numerical simulation of a simple solar dryer for tropical wood using a collector, Applied Thermal Engineering, 131 (2018) 356-369.
[15] A. Djebli, S. Hanini, O. Badaoui, B. Haddad, A. Benhamou, Modeling and comparative analysis of solar drying behavior of potatoes, Renewable Energy, 145 (2020) 1494-1506.
[16] Z. Azaizia, S. Kooli, I. Hamdi, W. Elkhal, A.A. Guizani, Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper, Renewable Energy, 145 (2020) 1972-1984.
[17] O.C. Aja, H.H. Al-Kayiem, Z.A. Abdul Karim, Analytical investigation of collector optimum tilt angle at low latitude, Journal of Renewable and Sustainable Energy, 5 (2013) 63112-63129.
[18] M.E. A. Slimani, M. Amirat, I. Kurucz, S. Bahria, A. Hamidat, W. B. Chaouch, A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions, Energy Conversion and Management, 133 (2017) 458-476.
[19] S. Nayak, G. Tiwari, Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods, Energy and Buildings, 41(8) (2009) 888-896.
[20] M. Irani, F. Sarhaddi, A. Behzadmehr, Thermal analysis of a solar wall equipped to nano phase change material, Amirkabir Journal of Mechanical Engineering, 51 (4) (2019) 1-12 (In Persian).