[1] C. Avedisian, Z. Zhao, The circular hydraulic jump in low gravity, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 456(2) (2000) 2127-2151.
[2] L. Rayleigh, On the theory of long waves and bores, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 90(61) (1914) 324-328.
[3] G. Birkhoff, E. Zarantonello, Jets, wakes, and cavities, Academic Press, New York, (1957).
[4] E. Watson, The radial spread of a liquid jet over a horizontal plane, Journal of Fluid Mechanics, 20(3) (1964) 481-499.
[5] A. Craik, R. Latham, M. Fawkes, P. Gribbon, The circular hydraulic jump, Journal of Fluid Mechanics, 112 (1981) 347-362.
[6] M. Errico, A study of the interaction of liquid jets with solid surfaces, University of California, San Diego, (1986).
[7] X. Liu, J.H. Lienhard, The hydraulic jump in circular jet impingement and in other thin liquid films, Experiments in Fluids, 15(2) (1993) 108-116.
[8] J.W. Bush, J.M. Aristoff, The influence of surface tension on the circular hydraulic jump, Journal of Fluid Mechanics, 489 (2003) 229-238.
[9] J.W. Bush, J.M. Aristoff, A. Hosoi, An experimental investigation of the stability of the circular hydraulic jump, Journal of Fluid Mechanics, 558 (2006) 33-52.
[10] T. Bohr, P. Dimon, V. Putkaradze, Shallow-water approach to the circular hydraulic jump, Journal of Fluid Mechanics, 254 (1993) 635-648.
[11] T. Bohr, V. Putkaradze, S. Watanabe, Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows, Physical review letters, 79(6) (1997) 1038-1041.
[12] F. Higuera, The hydraulic jump in a viscous laminar flow, Journal of fluid Mechanics, 274 (1994) 69-92.
[13] K. Yokoi, F. Xiao, A numerical study of the transition in the circular hydraulic jump, Physics Letters A, 257(3) (1999) 153-157.
[14] K. Yokoi, F. Xiao, Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows, Physica D: Nonlinear Phenomena, 161(3) (2002) 202-219.
[15] V. Ferreira, M. Tome, N. Mangiavacchi, A. Castelo, J. Cuminato, A. Fortuna, S. Mckee, High‐order upwinding and the hydraulic jump, International journal for numerical methods in fluids, 39(7) (2002) 549-583.
[16] S. Watanabe, V. Putkaradze, T. Bohr, Integral methods for shallow free-surface flows with separation, Journal of fluid mechanics, 480 (2003) 233-265.
[17] M. Gradeck, A. Kouachi, A. Dani, D. Arnoult, J. Borean, Experimental and numerical study of the hydraulic jump of an impinging jet on a moving surface, Experimental thermal and fluid science, 30(3) (2006) 193-201.
[18] A.K. Ray, J.K. Bhattacharjee, Standing and travelling waves in the shallow-water circular hydraulic jump, Physics Letters A, 371(3) (2007) 241-248.
[19] J. Mikielewicz, D. Mikielewicz, A simple dissipation model of circular hydraulic jump, International Journal of Heat and Mass Transfer, 52(1) (2009) 17-21.
[20] R. Kate, P. Das, S. Chakraborty, An Investigation on non-circular hydraulic jumps formed due to obliquely impinging circular liquid jets, Experimental Thermal and Fluid Science, 32(8) (2008) 1429-1439.
[21] M. Passandideh-Fard, A.R. Teymourtash, M. Khavari, Numerical study of circular hydraulic jump using volume-of-fluid method, Journal of Fluids Engineering, vol. 133(1) (2011) 011401.
[22] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1) (1981) 1981.
[23] M. Johnson, D. Maynes, J. Crockett, Experimental characterization of hydraulic jump caused by jet impingement on micro-patterned surfaces exhibiting ribs and cavities, Experimental Thermal and Fluid Science, 58 (2014) 216-223.
[24] K. Choo, S.J. Kim, The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement, Experimental Thermal and Fluid Science, 72 (2016) 12–17.
[25] R. Fernandez-Feria, E. Sanmiguel-Rojas, E.S. Benilov, On the origin and structure of a stationary circular hydraulic jump, Physics of Fluids, 31 (2019) 072104.
[26] A. Saberi, M.R. Mahpeykar, A.R. Teymourtash, Experimental Study and Numerical Simulation of the Circular Hydraulic Jump on the Concave Target Plate, Modares Mechanical Engineering, 20(2) (2020) 321-328.
[27] Y. Wang, R.E. Khayat, The role of gravity in the prediction of the circular hydraulic jump radius for high-viscosity liquids, Journal of Fluid Mechanics, 682 (2019) 128-161.
[28] N.A. Chigier, A. Chervinsky, Experimental investigation of swirling vortex motion in jets, Journal of Applied Mechanics, 34(2) (1967) 443-451.
[29] P. Billant, J. Chomaz, P. Huerre, Experimental study of vortex breakdown in swirling jets, Journal of Fluid Mechanics, 376 (1998) 183-219.
[30] L. Facciolo, A study on axially rotating pipe and swirling jet flows, Stockholm, Sweden (2006).
[31] W. Rose, A Swirling Round Turbulent Jet: 1—Mean-Flow Measurements, Journal of Applied Mechanics, 29(4) (1962) 615-625.
[32] B.D. Pratte, J. Keffer, The swirling turbulent jet, Journal of Fluids Engineering, 94(4) (1972) 739-747.
[33] S. Komori, H. Ueda, Turbulent flow structure in the near field of a swirling round free jet, Physics of Fluids, 28(7) (1985) 2075-2082.
[34] T. Loiseleux, J.M. Chomaz, Breaking of rotational symmetry in a swirling jet experiment, Physics of Fluids, 15(2) (2003) 511-523.
[35] S. Farokhi, R. TAGhavi, E. Rice, Effect of initial swirl distribution on the evolution of a turbulent jet, AIAA journal, 27(6) (1989) 700-706.
[36] J. Sislian, R. Cusworth, Measurements of mean velocity and turbulent intensities in a free isothermal swirling jet, AIAA journal, 24(2) (1986) 303-309.
[37] J. Panda, D. Mclaughlin, Experiments on the instabilities of a swirling jet, Physics of Fluids, 6(1) (1994) 263-276.
[38] D.G. Lilley, Annular vane swirler performance, Journal of propulsion and power, 15(2) (1999) 248-252.
[39] H. Rahai, T. Wong, Velocity field characteristics of turbulent jets from round tubes with coil inserts, Applied Thermal Engineering, 22(9) (2002) 1037-1045.
[40] G.L. Squires, Practical Physics, 4th Edition, Cambridge University Press, England (2001).