Global sensitivity analysis of nanomachining parameters by using dynamic scanning thermal microscope

Document Type : Research Article

Authors

Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

In this study, global sensitivity analysis of nanomachining parameters by using a dynamic scanning thermal microscope is investigated. Thus, the cross-section of a nanomachined sample by sweeping with different tip radius on the vibrational response of the system at different speeds and temperatures are simulated. It is shown that by increasing temperature, the depth of nanomachining decreases, and by increasing tip radius, the depth of nanomachining increases. Also, it is declared that the final quality of the nanomachining decreases by increasing speed traveling. Then, the Sobol indices for the mean depth and surface finish of the nanomachined sample are studied. It is shown that traveling speed is not affected the mean depth of nanomachining in its physical range and so the effects of the probe traveling speed and interaction between parameters are negligible. It is declared that the effect of interaction between temperature, traveling speed and tip radius is important on the final surface finish of the sample, however, the most important parameter is still the temperature difference. Then, the total indices and Sobol indices are compared. It is stated that the total indices are significantly higher than the Sobol indices for the final surface of ​​the nanomachining. For the mean depth of the nanomachining the total indices and Sobol indices for temperature and tip radius are approximately equal and the effect of probe traveling speed is negligible.

Keywords

Main Subjects


­­­[1] T. Lui, B. Yang, Thermography techniques for integrated circuits and semiconductor devices, Sensor Review, 27 (2007) 289-309.
[2] J. Juszczyk, A. Kaźmierczak-Bałata, P. Firek, J. Bodzenta, Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis, Ultramicroscopy, 175 (2017) 81-86.
[3] T.P Nguyen, E. Lemaire, S. Euphrasie, L. Thiery, D. Teyssieux, D. Briand, P. Vairac, Microfabricated high temperature sensing platform dedicated to Scanning Thermal Microscopy (SThM), Sensors and Actuators A: Physical, 275 (2018) 109-118.
[4] M. Timofeeva, A. Bolshakov, P.D. Tovee, D.A. Zeze, V.G. Dubrovskii, O.V. Kolosov, Scanning thermal microscopy with heat conductive nanowire probes, Ultramicroscopy, 162 (2016) 42-51.
[5] A.M. Massoud, J.M. Bluet, V. Lacaten, M. Haras, J.F. Robillard, P.O. Chapuis, Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy, Applied Physics Letters, 111 (2017) 063106.
[6] A. Dawson, M. Rides, A.S. Maxwell, A. Cuenat, A.R. Samano, Scanning thermal microscopy techniques for polymeric thin films using temperature contrast mode to measure thermal diffusivity and a novel approach in conductivity contrast, Polymer Testing, 41 (2015) 198-208.
[7] D. Varandani, KH. Agarwal, J. Brugger, R.B. Mehta, Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films, Review of Scientific Instruments, 87 (2016) 084903.
[8] S.W. Poon, J. Spiece, A.J. Robson, O.V. Kolosov, S. Thompson, Probing thermal transport and layering in disk media using scanning thermal microscopy, in International Magnetics Conference, Dublin, Ireland: IEEE (2017) 2150-4601.
[9] H.L. Lee, SH.SH. Chu, W.J. Chang, Vibration analysis of scanning thermal microscope probe nanomachining using Timoshenko beam theory, Current Applied Physics, 10 (2010) 570-573.
[10] A.A. Wilson, TH.T. Borca, Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes, Review of Scientific Instruments, 88 (2017) 074903.
[11] D.R. Trefon, J. Juszczyk, A. Fleming, N. Horny, J.A. Stéphane, M. Chirtoc, A.B. Kaźmierczak, J. Bodzenta, Thermal characterization of metal phthalocyanine layers using photothermal radiometry and scanning thermal microscopy methods, Synthetic Metals, 232 (2017) 72-78.
[12] M. Sohrabi, K.E. Torkanpouri, Vibration analysis of dynamic mode scanning thermal microscope nanomachining probe, Results in Physics, 13 (2019) 102164.
[13] M. Damircheli, Geometrical Parameters of Rectangular AFM Cantilevers Producing Highest Sensitivity in Excitation of Second Mode in Air Environment, International Journal of Advanced Design and Manufacturing Technology, 10(3) (2017) 51-58.
[14] R. Potekin, S. Dharmasena, D.M. Mcfarland, L.A. Bergman, A.F. Vakakis, H. Cho, Cantilever dynamics in higher-harmonic atomic force microscopy for enhanced material characterization, International Journal of Solids and Structures, 110-111 (2017) 332-339.
[15] G. Binnig, C.F. Quate, Ch. Gerber, Atomic Force Microscope, Physical Review Letters, 56 (1986) 930.
[16] Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100‐Å scale, Journal of Applied Physics, 61 (1987) 4723.
[17] T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, 69 (1991) 668.
[18] S. Horstmeier, V. Walhorn, D. Anselmetti, Dynamic AFM force spectroscopy of DNA using FM mode with constant excitation, Europhysics Letters, 117(3) (2017) 38005.
[19] SH. LeBlanc, H. Wilkins, Z. li, P. Kaur, H. Wang, D.E. Erie, Chapter Nine - Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein–DNA Complexes That Carry Out DNA Repair, Methods in Enzymology, 592 (2017) 187-212.
[20] M. Kocun, A. Labuda, A. Gannepalli, R. Proksch, Contact resonance atomic force microscopy imaging in air and water using photothermal excitation, Review of Scientific Instruments, 86 (2015) 083706.
[21] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, O. Custance, Chemical identification of individual surface atoms by atomic force microscopy, Nature, 446 (2007) 64-67.
[22] E.T. Herruzo, A.P. Perrino, R. Garcia, Fast nanomechanical spectroscopy of soft matter, Nature Communications, 5 (2014) 3126.
[23] K.E. Torkanpouri, H. Zohoor, M.H. Korayem, Global sensitivity analysis of backside coating parameters on dynamic response of AM-AFM, Mechanical Technologies, 22 (2017) 282-290.
[24] M.H. Korayem, A. Amanati, Sensitivity Analysis of Load Carrying Capacity in AFM-based Manipulation, Procedia - Social and Behavioral Sciences, 2(6) (2010) 7692-7693.
[25] M.H. Korayem, Z. Mahmoodi, M. Mohammadi, 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect, Journal of theoretical Biology, 436 (2018) 105-119.
[26] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, 55 (2001) 271-280.
[27] C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler, Microelectronic Engineering, 5(1–4) (1986) 509-513.
[28] A. Majumdar, SCANNING THERMAL MICROSCOPY, Annual Review of Materials Science, 29 (1999) 505-585.
[29] J.H. Bae, T. Ono, M. Esashi, Boron-doped diamond scanning probe for thermo-mechanical nanolithography, Diamond and Related Materials, 12 (2003) 2128-2135.
[30] T.H. Fang, W.J. Chang, Microthermal machining using scanning thermal microscopy, Applied Surface Science, 240 (2005) 312-317.
[31] S.S. Rao, Vibration of Continuous Systems, 2nd ed., Wiley, New Jersey, 2019.
[32] S.S. Rao, Mechanical Vibrations in SI Units, 6th ed., Wiley, New Jersey, 2017.
[33] W. Hoeffding, A class of statistics with asymptotically normal distributions, The Annals of Mathematical Statistics, 19 (1948) 293-325.