[1] T. Lui, B. Yang, Thermography techniques for integrated circuits and semiconductor devices, Sensor Review, 27 (2007) 289-309.
[2] J. Juszczyk, A. Kaźmierczak-Bałata, P. Firek, J. Bodzenta, Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis, Ultramicroscopy, 175 (2017) 81-86.
[3] T.P Nguyen, E. Lemaire, S. Euphrasie, L. Thiery, D. Teyssieux, D. Briand, P. Vairac, Microfabricated high temperature sensing platform dedicated to Scanning Thermal Microscopy (SThM),
Sensors and Actuators A: Physical, 275 (2018) 109-118.
[4] M. Timofeeva, A. Bolshakov, P.D. Tovee, D.A. Zeze, V.G. Dubrovskii, O.V. Kolosov, Scanning thermal microscopy with heat conductive nanowire probes, Ultramicroscopy, 162 (2016) 42-51.
[5] A.M. Massoud, J.M. Bluet, V. Lacaten, M. Haras, J.F. Robillard, P.O. Chapuis, Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy, Applied Physics Letters, 111 (2017) 063106.
[6] A. Dawson, M. Rides, A.S. Maxwell, A. Cuenat, A.R. Samano, Scanning thermal microscopy techniques for polymeric thin films using temperature contrast mode to measure thermal diffusivity and a novel approach in conductivity contrast, Polymer Testing, 41 (2015) 198-208.
[7] D. Varandani, KH. Agarwal, J. Brugger, R.B. Mehta, Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films, Review of Scientific Instruments, 87 (2016) 084903.
[8] S.W. Poon, J. Spiece, A.J. Robson, O.V. Kolosov, S. Thompson, Probing thermal transport and layering in disk media using scanning thermal microscopy, in International Magnetics Conference, Dublin, Ireland: IEEE (2017) 2150-4601.
[9] H.L. Lee, SH.SH. Chu, W.J. Chang, Vibration analysis of scanning thermal microscope probe nanomachining using Timoshenko beam theory, Current Applied Physics, 10 (2010) 570-573.
[10] A.A. Wilson, TH.T. Borca, Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes,
Review of Scientific Instruments, 88 (2017) 074903.
[11] D.R. Trefon, J. Juszczyk, A. Fleming, N. Horny, J.A. Stéphane, M. Chirtoc, A.B. Kaźmierczak, J. Bodzenta, Thermal characterization of metal phthalocyanine layers using photothermal radiometry and scanning thermal microscopy methods,
Synthetic Metals, 232 (2017) 72-78.
[12] M. Sohrabi, K.E. Torkanpouri, Vibration analysis of dynamic mode scanning thermal microscope nanomachining probe, Results in Physics, 13 (2019) 102164.
[13] M. Damircheli, Geometrical Parameters of Rectangular AFM Cantilevers Producing Highest Sensitivity in Excitation of Second Mode in Air Environment, International Journal of Advanced Design and Manufacturing Technology, 10(3) (2017) 51-58.
[14] R. Potekin, S. Dharmasena, D.M. Mcfarland, L.A. Bergman, A.F. Vakakis, H. Cho, Cantilever dynamics in higher-harmonic atomic force microscopy for enhanced material characterization, International Journal of Solids and Structures, 110-111 (2017) 332-339.
[15] G. Binnig, C.F. Quate, Ch. Gerber, Atomic Force Microscope, Physical Review Letters, 56 (1986) 930.
[16] Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100‐Å scale, Journal of Applied Physics, 61 (1987) 4723.
[17] T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, 69 (1991) 668.
[18] S. Horstmeier, V. Walhorn, D. Anselmetti, Dynamic AFM force spectroscopy of DNA using FM mode with constant excitation, Europhysics Letters, 117(3) (2017) 38005.
[19] SH. LeBlanc, H. Wilkins, Z. li, P. Kaur, H. Wang, D.E. Erie, Chapter Nine - Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein–DNA Complexes That Carry Out DNA Repair,
Methods in Enzymology,
592 (2017) 187-212.
[20] M. Kocun, A. Labuda, A. Gannepalli, R. Proksch, Contact resonance atomic force microscopy imaging in air and water using photothermal excitation,
Review of Scientific Instruments, 86 (2015) 083706.
[21] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, O. Custance, Chemical identification of individual surface atoms by atomic force microscopy, Nature, 446 (2007) 64-67.
[22] E.T. Herruzo, A.P. Perrino, R. Garcia, Fast nanomechanical spectroscopy of soft matter, Nature Communications, 5 (2014) 3126.
[23] K.E. Torkanpouri, H. Zohoor, M.H. Korayem, Global sensitivity analysis of backside coating parameters on dynamic response of AM-AFM, Mechanical Technologies, 22 (2017) 282-290.
[25] M.H. Korayem, Z. Mahmoodi, M. Mohammadi, 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect, Journal of theoretical Biology, 436 (2018) 105-119.
[26] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, 55 (2001) 271-280.
[28] A. Majumdar, SCANNING THERMAL MICROSCOPY, Annual Review of Materials Science, 29 (1999) 505-585.
[29] J.H. Bae, T. Ono, M. Esashi, Boron-doped diamond scanning probe for thermo-mechanical nanolithography, Diamond and Related Materials, 12 (2003) 2128-2135.
[30] T.H. Fang, W.J. Chang, Microthermal machining using scanning thermal microscopy,
Applied Surface Science, 240 (2005) 312-317.
[31] S.S. Rao, Vibration of Continuous Systems, 2nd ed., Wiley, New Jersey, 2019.
[32] S.S. Rao, Mechanical Vibrations in SI Units, 6th ed., Wiley, New Jersey, 2017.
[33] W. Hoeffding, A class of statistics with asymptotically normal distributions, The Annals of Mathematical Statistics, 19 (1948) 293-325.