Numerical Solution of Liquid-Vapor Flow in Variable Cross-Section Ducts by Using Flux Vector Splitting Method

Document Type : Research Article

Authors

Ph.D. Candidate-Faculty of Mechanical Engineering- Sharif University of Technology

Abstract

The purpose of this study is to simulate numerically water-vapor two-phase flow in ducts with variable cross-section. The homogeneous equilibrium model is used to describe the two-phase in a converging-diverging nozzle with the inlet vapor quality in the rage of 0. 05

Keywords

Main Subjects


[1] حمیدی، صباح؛ کرمانی، محمد جعفر؛ بهشتی امیری، حسین؛ ”شبیه سازی عددی جریان دوفاز حدود صوت حاوی شوک در نازل همگرا-واگرا“، نشریه علمی-پژوهشی امیرکبیر )مهندسی مکانیک(،سال چهل و پنجم، شماره 1، صفحات 15 تا 27 ، تابستان 1392 .
[2] Clerc, S., “Numerical simulation of the homogeneous equilibrium model for two-phase flows”, Journal of
Computational Physics, Vol. 161, No. 1, pp. 354– 375,2000.
[3] Hejranfar, K., Kamali-Moghadam, R., “Preconditioned characteristic boundary conditions for solution of the
preconditioned Euler equations at low Mach number flows”, Journal of Computational Physics, Vol. 231,No. 12, pp. 4384– 4402, 2012.
[4] Edwards, J. R., Franklin, R. K., & Liou, M. S., “Lowdiffusion flux-splitting methods for real fluid flows
with phase transitions”, AIAA journal, Vol. 38, No. 9,pp. 1624– 1633, 2000.
[5] Ihm, S.W., and Kim, C., “Computations of homogeneous-equilibrium two-phase flows with accurate and efficient shock-stable schemes”, AIAA journal, Vol. 46, No. 12, pp. 3012– 3037, 2008.
[6] Halama, J., Benkhaldoun, F., and Fořt, J., “Numerical modeling of two-phase transonic flow. Mathematics
and Computers in Simulation”, Vol. 80, No. 8, pp.1624– 1635, 2010.
[7] Kim, J. S., & Dunsheath, H. J., “A Homogeneous Equilibrium Model Improved for Pipe Flows”,Proceedings of the World Congress on Engineering and Computer Science, 2010.
[8] Faccanoni, G., Kokh, S., and Allaire, G., “Modelling and simulation of liquid-vapor phase transition
in compressible flows based on thermodynamical equilibrium”. ESAIM: Mathematical Modelling and
Numerical Analysis, Vol. 46, No. 5, pp. 1029– 1054,2012.
[9] Bernard-Champmartin, A., Poujade, O., Mathiaud,J., Ghidaglia, J. M., “Modelling of an homogeneous
equilibrium mixture model (HEM)”, Acta applicandae mathematicae, Vol. 129, No. 1, pp. 1– 21, 2014.
[10] Fernandes, J.L.M., “Correlations for fast computation of thermodynamic properties of saturated water and
steam”, International journal of energy research, Vol.19, No. 6, pp. 507– 514, 1995.
[11] Ghiaasiaan, S.M., “Two-phase flow, boiling, and condensation: in conventional and miniature systems”.
Cambridge University Press, 2007.
[12] Pletcher, R. H., Tannehill, J. C., & Anderson, D.,“Computational fluid mechanics and heat transfer”,
CRC Press, pp. 373– 378, 2012.
[13] Behbahani-Nejad, M., Shekari, Y., “The accuracy and efficiency of a reduced-order model for transient
flow analysis in gas pipelines”, Journal of Petroleum Science and Engineering, Vol. 73, No. 1, pp. 13– 19,
2010.
[14] Zhao, J., He, P., and Tang, H., “Steger–Warming flux vector splitting method for special relativistic
hydrodynamics”, Mathematical Methods in the Applied Sciences, Vol. 37, No. 7, pp. 1003– 1018,
2014.
[15] Chen, M., Jiao, G. W., Deng, S. S., & Wang, J. H.,“Flux vector splitting solutions for coupling hydraulic
transient of gas-liquid-solid three-phase flow in pipelines”, Applied Mathematics and Mechanics, Vol.
34, pp. 811– 822, 2013.
[16] Hirsch, C., “Numerical Computation of Internal and External Flows: The Fundamentals of Computational
Fluid Dynamics: The Fundamentals of Computational Fluid Dynamics”, Vol. 1, pp. 579– 583, Butterworth-
Heinemann, 2007.
[17] Städtke, H., “Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena
and Related Numerical Methods”, John Wiley & Sons, pp. 188– 190, 2006.
[18] De Vuyst, F., Ghidaglia, J. M., and Le Coq, G., “On the numerical simulation of multiphase water flows
with changes of phase and strong gradients using the Homogeneous Equilibrium Model”, Journal on Finite
Volumes, Vol. 2, No. 1, pp. 1– 36, 2005.