[1] L.S. Tong, Y.S. Tang, Boiling Heat Transfer And Two-Phase Flow, Taylor & Francis, 1997.
[2] S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995.
[3] S. You, J. Kim, K. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied physics letters, 83(16) (2003) 3374-3376.
[4] D. Wen, Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids, Journal of Nanoparticle Research, 7(2-3) (2005) 265-274.
[5] H. Sakashita, Pressure effect on CHF enhancement in pool boiling of nanofluids, Journal of nuclear science and technology, 53(6) (2016) 797-802.
[6] M. Sarafraz, T. Kiani, F. Hormozi, Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids, International Communications in Heat and Mass Transfer, 70 (2016) 75-83.
[7] S. Jun, J. Kim, D. Son, H.Y. Kim, S.M. You, Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings, Nuclear Engineering and Technology, 48(4) (2016) 932-940.
[8] M. Dadjoo, N. Etesami, M.N. Esfahany, Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid, Applied Thermal Engineering, 124 (2017) 353-361.
[9] A. Nazari, S. Saedodin, Porous anodic alumina coating for optimisation of pool-boiling performance, Surface Engineering, 33(10) (2017) 753-759.
[10] A. Nazari, S. Saedodin, Critical heat flux enhancement of pool boiling using a porous nanostructured coating, Experimental Heat Transfer, 30(4) (2017) 316-327.
[11] A. Nazari, S. Saedodin, An experimental study of the nanofluid pool boiling on the aluminium surface, Journal of Thermal Analysis and Calorimetry, 135(3) (2019) 1753-1762.
[12] M. Mohammadpourfard, H. Aminfar, A. Qhafuri, R. Maroofiazar, Experimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Tube, Iranian Journal of Mechanical Engineering Transactions of the ISME, 19(2) (2018) 116-126.
[13] H. Aminfar, M. Mohammadpourfard, R. Maroofiazar, Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus, Experimental thermal and fluid science, 58 (2014) 156-169.
[14] J.C. Godinez, D. Fadda, J. Lee, S.M. You, Development of a stable Boehmite layer on aluminum surfaces for improved pool boiling heat transfer in water, Applied Thermal Engineering, 156 (2019) 541-549.
[15] M.S. Lee, D.H. Kam, Y.H. Jeong, Effects of silica nanoparticles and low concentration on the deterioration of critical heat flux in a pool boiling experiment with a flat-type heater, International Journal of Heat and Mass Transfer, 144 (2019) 118420.
[16] S.J. Kim, I.C. Bang, J. Buongiorno, L. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, 50(19-20) (2007) 4105-4116.
[17] S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, 53(5-6) (2010) 972-981.
[18] J.P. Holman, Experimental methods for engineers, (1966).
[19] S.J. Kline, F. McClintock, Describing uncertainties in single-sample experiments, Mechanical engineering, 75(1) (1953) 3-8.
[20] J.G. Collier, J.R. Thome, Convective boiling and condensation, Clarendon Press, 1994.
[21] A. Nayak, P. Kulkarni, A. Chinchole, Experimental investigation on pool boiling critical heat flux with nanofluids, Journal of Nanofluids, 4(2) (2015) 140-146.
[22] S. Kandlikar, V. Dhir, Y. Iida, R.H. Heist, Handbook of phase change: Boiling and condensation, (1999).