تحلیل عددی مرز تمایز زبری سطح و موانع دیواری در جریان آرام فشار- محرک درون ریزمجراهای ناصاف

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک-تبدیل انرژی، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

در مقاله حاضر، جریان آرام فشار- محرک درون ریزمجرایی متشکل از دو صفحه موازی تخت با دیواره‌های ناصاف شبیه‌سازی شده است. ناصافی‌های سطح دیواره‌ها دارای پروفیل سینوسی به ارتفاع نسبی       15/0≥ h/H≥  0 می‌باشد. معادلات حاکم با استفاده از روش حجم محدود در یک شبکه غیریکنواخت با تعامد حداکثر خطوط شبکه در مجاورت مرزهای ناصاف و در دستگاه مختصات عمومی دوبعدی حل شده‌اند. در اولین گام، ناصافی‌های سطح یک دیواره، به دو دسته "زبری سطح" و "موانع دیواری" تقسیم‌بندی شده است. سپس مرز تمایز زبری سطح از موانع دیواری با تعریف و به‌کارگیری دو معیار کیفی و کمی تعیین شده است. بر اساس معیار کیفی، هنگامی که ناصافی‌های سطح از نوع زبری سطح است، توزیع فشار در خط مرکزی همانند ریزمجرای کاملاً صاف، خطی است. اما هنگامی که ناصافی‌های سطح از نوع موانع دیواری است، توزیع فشار در خط مرکزی نوسانی است. در معیار کمی، متوسط نیروهای قائم و برشی در مجاورت سطح ناصاف با دقت محاسبه و با هم مقایسه می‌شوند. بر اساس نتایج، در جریان آرام درون ریزمجراهای تخت ناصاف، مزر تمایز زبری سطح و موانع دیواری ( ) برابر مقدار 042/0 می‌باشد که مستقل از Δp و Re است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical analysis of distinction boundary of surface roughness and wall blocks in laminar pressure-driven flow within the rugged microchannels

نویسندگان [English]

  • Mohammad Mahdi Fakhari
  • Seyed Ali Mirbozorgi
Department of Mechanical Engineering (Energy Conversion), Faculty of Engineering, University of Birjand, Birjand, Iran.
چکیده [English]

In the present study, a laminar pressure-driven flow within a microchannel consisting of two parallel flat plates with rugged walls has been simulated. The walls’ surface ruggednesses have sinusoidal profiles with relative heights of 0≤h/H≤0.15. The governing equations in a two-dimensional general coordinate are solved using the finite-volume method in a non-uniform grid with the maximum orthogonality of the grid lines adjacent to the rugged boundaries. In the first step, the surface ruggednesses of the wall are divided into two categories: surface roughness and wall blocks. Then, the boundary of surface roughness from wall blocks is determined by defining and applying two qualitative and quantitative criteria. According to the qualitative criterion, when the surface ruggedness is of the order of surface roughness, the pressure distribution at the centerline remains as linear as a perfectly smooth microchannel. But when the surface ruggednesses are of the order of wall blocks, however, the pressure distribution at the centerline is oscillating. Also, on the quantitative criterion, the average shear and normal forces just adjacent to the rugged surfaces are accurately calculated and compared. According to the results, in laminar flow within the rugged planar microchannels,  is 0.042 which is independent of Δp.

کلیدواژه‌ها [English]

  • Laminar pressure-driven flow
  • Planar microchannel
  • Wall’s surface ruggedness
  • Surface roughness
  • Wall blocks
[1] S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology, Heat transfer engineering, 24(1) (2003) 3-17.
[2] S. Mehendale, A.M. Jacobi, R. Shah, Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design, (2000).
[3] S. Kandlikar, D. Li, S. Colin, S. Garimella, M.R. King, Heat transfer and fluid flow in minichannels and microchannels, second ed., Butterworth-Heinemann, 2014.
[4] D. Li, Electrokinetics in microfluidics, Elsevier, 2004.
[5] J.T. Black, R.A. Kohser, DeGarmo's materials and processes in manufacturing, John Wiley & Sons, 2017.
[6] G. Gamrat, M. Favre-Marinet, S. Le Person, R. Baviere, F. Ayela, An experimental study and modelling of roughness effects on laminar flow in microchannels, Journal of Fluid Mechanics, 594 (2008) 399-423.
[7] Y. Hu, C. Werner, D. Li, Influence of three-dimensional roughness on pressure-driven flow through microchannels, J. Fluids Eng., 125(5) (2003) 871-879.
[8] I. Papautsky, J. Brazzle, T. Ameel, A.B. Frazier, Laminar fluid behavior in microchannels using micropolar fluid theory, Sensors and actuators A: Physical, 73(1-2) (1999) 101-108.
[9] H.S. Park, J. Punch, Friction factor and heat transfer in multiple microchannels with uniform flow distribution, International Journal of Heat and Mass Transfer, 51(17-18) (2008) 4535-4543.
[10] V. Kumar, M. Paraschivoiu, K.D.P. Nigam, Single-phase fluid flow and mixing in microchannels, Chemical Engineering Science, 66(7) (2011) 1329-1373.
[11] G. Croce, P. D’agaro, C. Nonino, Three-dimensional roughness effect on microchannel heat transfer and pressure drop, International Journal of Heat and Mass Transfer, 50(25-26) (2007) 5249-5259.
[12] C. Zhang, Y. Chen, M. Shi, Effects of roughness elements on laminar flow and heat transfer in microchannels, Chemical Engineering and Processing: Process Intensification, 49(11) (2010) 1188-1192.
[13] V. Dharaiya, S. Kandlikar, A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale, International journal of heat and mass transfer, 57(1) (2013) 190-201.
[14] S. Yang, B. Yu, M. Zou, M. Liang, A fractal analysis of laminar flow resistance in roughened microchannels, International Journal of Heat and Mass Transfer, 77 (2014) 208-217.
[15] M. Kharati-Koopaee, M. Zare, Effect of aligned and offset roughness patterns on the fluid flow and heat transfer within microchannels consist of sinusoidal structured roughness, International Journal of Thermal Sciences, 90 (2015) 9-23.
[16] S. Kakaç, R.K. Shah, W. Aung, Handbook of single-phase convective heat transfer, (1987).
[17] M. Farrashkhalvat, J. Miles, Basic Structured Grid Generation: With an introduction to unstructured grid generation, Elsevier, 2003.
[18] K.A. Hoffmann, S.T. Chiang, Computational fluid dynamics for engineers, Engineering Education System Wichita, KS, 1993.
[19] K. Sørli, Generation of Structured and Adaptive Grids by Solving Elliptic Partial Differential Equations, (1996).
[20] R.L. Panton, Incompressible flow, Fourth ed., John Wiley & Sons, 2013.
[21] M. Kohl, S. Abdel-Khalik, S. Jeter, D. Sadowski, An experimental investigation of microchannel flow with internal pressure measurements, International journal of heat and mass transfer, 48(8) (2005) 1518-1533.
[22] S.-S. Hsieh, C.-Y. Lin, C.-F. Huang, H.-H. Tsai, Liquid flow in a micro-channel, Journal of Micromechanics and Microengineering, 14(4) (2004) 436.