[1] S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology, Heat transfer engineering, 24(1) (2003) 3-17.
[2] S. Mehendale, A.M. Jacobi, R. Shah, Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design, (2000).
[3] S. Kandlikar, D. Li, S. Colin, S. Garimella, M.R. King, Heat transfer and fluid flow in minichannels and microchannels, second ed., Butterworth-Heinemann, 2014.
[4] D. Li, Electrokinetics in microfluidics, Elsevier, 2004.
[5] J.T. Black, R.A. Kohser, DeGarmo's materials and processes in manufacturing, John Wiley & Sons, 2017.
[6] G. Gamrat, M. Favre-Marinet, S. Le Person, R. Baviere, F. Ayela, An experimental study and modelling of roughness effects on laminar flow in microchannels, Journal of Fluid Mechanics, 594 (2008) 399-423.
[7] Y. Hu, C. Werner, D. Li, Influence of three-dimensional roughness on pressure-driven flow through microchannels, J. Fluids Eng., 125(5) (2003) 871-879.
[8] I. Papautsky, J. Brazzle, T. Ameel, A.B. Frazier, Laminar fluid behavior in microchannels using micropolar fluid theory, Sensors and actuators A: Physical, 73(1-2) (1999) 101-108.
[9] H.S. Park, J. Punch, Friction factor and heat transfer in multiple microchannels with uniform flow distribution, International Journal of Heat and Mass Transfer, 51(17-18) (2008) 4535-4543.
[10] V. Kumar, M. Paraschivoiu, K.D.P. Nigam, Single-phase fluid flow and mixing in microchannels, Chemical Engineering Science, 66(7) (2011) 1329-1373.
[11] G. Croce, P. D’agaro, C. Nonino, Three-dimensional roughness effect on microchannel heat transfer and pressure drop, International Journal of Heat and Mass Transfer, 50(25-26) (2007) 5249-5259.
[12] C. Zhang, Y. Chen, M. Shi, Effects of roughness elements on laminar flow and heat transfer in microchannels, Chemical Engineering and Processing: Process Intensification, 49(11) (2010) 1188-1192.
[13] V. Dharaiya, S. Kandlikar, A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale, International journal of heat and mass transfer, 57(1) (2013) 190-201.
[14] S. Yang, B. Yu, M. Zou, M. Liang, A fractal analysis of laminar flow resistance in roughened microchannels, International Journal of Heat and Mass Transfer, 77 (2014) 208-217.
[15] M. Kharati-Koopaee, M. Zare, Effect of aligned and offset roughness patterns on the fluid flow and heat transfer within microchannels consist of sinusoidal structured roughness, International Journal of Thermal Sciences, 90 (2015) 9-23.
[16] S. Kakaç, R.K. Shah, W. Aung, Handbook of single-phase convective heat transfer, (1987).
[17] M. Farrashkhalvat, J. Miles, Basic Structured Grid Generation: With an introduction to unstructured grid generation, Elsevier, 2003.
[18] K.A. Hoffmann, S.T. Chiang, Computational fluid dynamics for engineers, Engineering Education System Wichita, KS, 1993.
[19] K. Sørli, Generation of Structured and Adaptive Grids by Solving Elliptic Partial Differential Equations, (1996).
[20] R.L. Panton, Incompressible flow, Fourth ed., John Wiley & Sons, 2013.
[21] M. Kohl, S. Abdel-Khalik, S. Jeter, D. Sadowski, An experimental investigation of microchannel flow with internal pressure measurements, International journal of heat and mass transfer, 48(8) (2005) 1518-1533.
[22] S.-S. Hsieh, C.-Y. Lin, C.-F. Huang, H.-H. Tsai, Liquid flow in a micro-channel, Journal of Micromechanics and Microengineering, 14(4) (2004) 436.