[1] S.K. Khaitan, J.D. McCalley, Design techniques and applications of cyberphysical systems: A survey, IEEE Systems Journal, 9(2) (2014) 350-365.
[2] M. Jirgl, Z. Bradac, P. Fiedler, Human-in-the-loop issue in context of the cyber-physical systems, IFAC-PapersOnLine, 51(6) (2018) 225-230.
[3] I. Lenz, R.A. Knepper, A. Saxena, DeepMPC: Learning deep latent features for model predictive control, in: Robotics: Science and Systems, Rome, Italy, 2015.
[4] Q. Zhu, T. Başar, Robust and resilient control design for cyber-physical systems with an application to power systems, in: 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, 2011, pp. 4066-4071.
[5] P.A. Ioannou, J. Sun, Robust adaptive control, Courier Corporation, 2012.
[6] J.-X. Xu, Y. Tan, Linear and nonlinear iterative learning control, Springer, 2003.
[7] S.M. Grigorescu, B. Trasnea, L. Marina, A. Vasilcoi, T. Cocias, Neurotrajectory: a neuroevolutionary approach to local state trajectory learning for autonomous vehicles, IEEE Robotics and Automation Letters, 4(4) (2019) 3441-3448.
[8] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural network architectures and their applications, Neurocomputing, 234 (2017) 11-26.
[9] A. Zappone, M. Di Renzo, M. Debbah, Wireless networks design in the era of deep learning: Model-based, AI-based, or both?, IEEE Transactions on Communications, 67(10) (2019) 7331-7376.
[10] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural computation, 18(7) (2006) 1527-1554.
[11] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G.V. Hernandez, L. Krpalkova, D. Riordan, J. Walsh, Deep learning vs. traditional computer vision, in: Science and Information Conference, Springer, 2019, pp. 128-144.
[12] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep visuomotor policies, The Journal of Machine Learning Research, 17(1) (2016) 1334-1373.
[13] R. Raina, A. Madhavan, A.Y. Ng, Large-scale deep unsupervised learning using graphics processors, in: Proceedings of the 26th annual international conference on machine learning, 2009, pp. 873-880.
[14] D.A. Pomerleau, Alvinn: An autonomous land vehicle in a neural network, in: Advances in neural information processing systems, 1989, pp. 305-313.
[15] U. Muller, J. Ben, E. Cosatto, B. Flepp, Y.L. Cun, Off-road obstacle avoidance through end-to-end learning, in: Advances in neural information processing systems, 2006, pp. 739-746.
[16] M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, U. Muller, K. Zieba, Visualbackprop: efficient visualization of cnns, arXiv preprint arXiv:1611.05418, (2016).
[17] M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, U. Muller, K. Zieba, Visualbackprop: visualizing cnns for autonomous driving, arXiv preprint arXiv:1611.05418, 2 (2016).
[18] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, U. Muller, J. Zhang, End to end learning for self-driving cars, arXiv preprint arXiv:1604.07316, (2016).
[20] J. Kong, M. Pfeiffer, G. Schildbach, F. Borrelli, Kinematic and dynamic vehicle models for autonomous driving control design, in: 2015 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2015, pp. 1094-1099.
[21] Z. Wu, Y. Liu, G. Pan, A smart car control model for brake comfort based on car following, IEEE transactions on intelligent transportation systems, 10(1) (2008) 42-46.