[1] M. Aydın, U. Köklü, Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy, Simulation Modelling Practice and Theory, 100 (2020) 102039.
[2] L. Zhou, B. Deng, F. Peng, M. Yang, R. Yan, Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics, International Journal of Mechanical Sciences, 169 (2020) 105343.
[3] S. Wojciechowski, M. Matuszak, B. Powałka, M. Madajewski, R.W. Maruda, G.M. Królczyk, Prediction of cutting forces during micro end milling considering chip thickness accumulation, International Journal of Machine Tools and Manufacture, 147 (2019) 103466.
[4] F. Koenigsberger, A.J.P. Sabberwal, An investigation into the cutting force pulsations during milling operations, International Journal of Machine Tool Design and Research, 1(1) (1961) 15-33.
[5] S. Jayaram, S.G. Kapoor, R.E. DeVor, Estimation of the specific cutting pressures for mechanistic cutting force models, International Journal of Machine Tools and Manufacture, 41(2) (2001) 265-281.
[6] E. Budak, Y. Altintas, E.J.A. Armarego, Prediction of Milling Force Coefficients From Orthogonal Cutting Data, Manufacturing Science and Engineering, 118(2) (1996) 216-224.
[7] P. Lee, Y. Altintaş, Prediction of ball-end milling forces from orthogonal cutting data, International Journal of Machine Tools and Manufacture, 36(9) (1996) 1059-1072.
[8] G. Yucesan, Y. Altintas, Prediction of ball end milling forces, ASME Journal of Engineering for Industry 118 (1) (1996) 95–103.
[9] T. Bailey, e. al, Generic simulation approach for multi-axis machining, Manufacturing Science and Engineering, 124(3) (2002) 624-642.
[10] S. Engin, Y. Altintas, Mechanics and dynamics of general milling cutters.: Part I: helical end mills, International Journal of Machine Tools and Manufacture, 41(15) (2001) 2195-2212.
[11] S. Engin, Y. Altintas, Mechanics and dynamics of general milling cutters.: Part II: inserted cutters, International Journal of Machine Tools and Manufacture, 41(15) (2001) 2213-2231.
[12] J. Gradišek, M. Kalveram, K. Weinert, Mechanistic identification of specific force coefficients for a general end mill, International Journal of Machine Tools and Manufacture, 44(4) (2004) 401-414.
[13] G. Yucesan, Q. Xie, A.E. Bayoumi, Determination of process parameters through a mechanistic force model of milling operations, International Journal of Machine Tools and Manufacture, 33(4) (1993) 627-641.
[14] I.G. Euan, E. Ozturk, N.D. Sims, Modeling Static and Dynamic Cutting Forces and Vibrations for Inserted Ceramic Milling Tools, Procedia CIRP, 8 (2013) 564-569.
[15] S. Campocasso, J.P. Costes, G. Fromentin, S. Bissey-Breton, G. Poulachon, A generalised geometrical model of turning operations for cutting force modelling using edge discretisation, Applied Mathematical Modelling, 39(21) (2015) 6612-6630.
[16] R. Kountanya, C. Guo, D. Viens, Time-averaged and Instantaneous Mechanistic Models using Artificial Force Synthesis in Helical End Milling, Procedia Manufacturing, 10 (2017) 737-749.