[1] M. Adams, The primary cilium: An orphan organelle finds a home, Nature Education, 3(9) (2010) 54.
[2] A. Abbasszadeh Rad, B. Vahidi, A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow, Journal of Computational Applied Mechanics, 47(1) (2016) 35-44.
[3] V. Singla, J.F. Reiter, The primary cilium as the cell's antenna: signaling at a sensory organelle, science, 313(5787) (2006) 629-633.
[4] E.A. Schwartz, M.L. Leonard, R. Bizios, S.S. Bowser, Analysis and modeling of the primary cilium bending response to fluid shear, American Journal of Physiology-Renal Physiology, 272(1) (1997) F132-F138.
[5] M. Spasic, C.R. Jacobs, Primary cilia: Cell and molecular mechanosensors directing whole tissue function, in: Seminars in cell & developmental biology, Elsevier, 2017, pp. 42-52.
[6] A.H. Abbasszadeh Rad, B. Vahidi, The Effect of the Kind of Attachment of Primary Cilium to Cell in Its Response to the Fluid Flow: A 3D Computational Simulation, Journal of Solid and Fluid Mechanics, 8(1) (2018) 203-213.
[7] S. Rydholm, G. Zwartz, J.M. Kowalewski, P. Kamali-Zare, T. Frisk, H. Brismar, Mechanical properties of primary cilia regulate the response to fluid flow, American Journal of Physiology-Renal Physiology, 298(5) (2010) F1096-F1102.
[8] C. Battle, C.M. Ott, D.T. Burnette, J. Lippincott-Schwartz, C.F. Schmidt, Intracellular and extracellular forces drive primary cilia movement, Proceedings of the National Academy of Sciences, 112.5 (2015): 1410-1415.
[9] M.E. Downs, A.M. Nguyen, F.A. Herzog, D.A. Hoey, C.R. Jacobs, An experimental and computational analysis of primary cilia deflection under fluid flow, Computer methods in biomechanics and biomedical engineering, 17(1) (2014) 2-10.
[10] P.S. Mathieu, J.C. Bodle, E.G. Loboa, Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix, Journal of biomechanics, 47(9) (2014) 2211-2217.
[11] P. Tummala, E.J. Arnsdorf, C.R. Jacobs, The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment, Cellular and molecular bioengineering, 3(3) (2010) 207-212.
[12] D.A. Hoey, S. Tormey, S. Ramcharan, F.J. O'Brien, C.R. Jacobs, Primary cilia‐mediated mechanotransduction in human mesenchymal stem cells, Stem cells, 30(11) (2012) 2561-2570.
[13] G. Chen, R. Xu, C. Zhang, Y. Lv, Responses of MSCs to 3D scaffold matrix mechanical properties under oscillatory perfusion culture, ACS applied materials & interfaces, 9(2) (2017) 1207-1218.
[14] P. Pisani, M.D. Renna, F. Conversano, E. Casciaro, M. Di Paola, E. Quarta, M. Muratore, S. Casciaro, Major osteoporotic fragility fractures: Risk factor updates and societal impact, World journal of orthopedics, 7(3) (2016) 171.
[15] L.C. Espinha, D.A. Hoey, P.R. Fernandes, H.C. Rodrigues, C.R. Jacobs, Oscillatory fluid flow influences primary cilia and microtubule mechanics, Cytoskeleton, 71(7) (2014) 435-445.
[16] J. Cui, Y. Liu, B.M. Fu, Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method, Biomechanics and modeling in mechanobiology, 19(1) (2020) 21-3.
[17] M.A. Corrigan, G.P. Johnson, E. Stavenschi, M. Riffault, M.-N. Labour, D.A. Hoey, TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium, Scientific reports, 8(1) (2018) 3824.
[18] M. Moradkhani, B. Vahidi, Effect of Collagen Substrate Stiffness and Thickness on the response of a Mesenchymal Stem Cell in Cell Culture Environment: A Computational Study, (2016).
[19] H. Praetorius, K.R. Spring, Bending the MDCK cell primary cilium increases intracellular calcium, The Journal of membrane biology, 184(1) (2001) 71-79.