[1] M. Sponchioni, U.C. Palmiero, D. Moscatelli, Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering, Materials Science and Engineering: C, 102 (2019) 7.
[2] A. Gandhi, A. Paul, S.O. Sen, K.K. Sen, Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications, asian journal of pharmaceutical sciences, 10(2) (2015) 99-107.
[3] F. Zhang, W. Wu, X. Zhang, X. Meng, G. Tong, Y. Deng, Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release, Cellulose, 23(1) (2016) 415-425.
[4] R.R. Kokardekar, V.K. Shah, H.R. Mody, PNIPAM Poly (N-isopropylacrylamide): A thermoresponsive “smart” polymer in novel drug delivery systems, Internet Journal of Medical Update-EJOURNAL, 7(2) (2012).
[5] F. Natalia, G. Stoychev, N. Puretskiy, I. Leonid, V. Dmitry, Porous thermo-responsive pNIPAM microgels, European Polymer Journal, 68 (2015) 650-656.
[6] A. Burmistrova, M. Richter, C. Uzum, R.v. Klitzing, Effect of cross-linker density of P (NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young’s modulus, Colloid and Polymer Science, 289(5-6) (2011) 613-624.
[7] K. Jain, R. Vedarajan, M. Watanabe, M. Ishikiriyama, N. Matsumi, Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers, Polymer Chemistry, 6(38) (2015) 6819-6825.
[8] A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, R. Von Klitzing, The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles, Polymers, 3(4) (2011) 1575-1590.
[9] E. Roux, R. Stomp, S. Giasson, M. PÉzolet, P. Moreau, J.C. Leroux, Steric stabilization of liposomes by pH‐responsive N‐isopropylacrylamide copolymer, Journal of pharmaceutical sciences, 91(8) (2002) 1795-1802.
[10] H. Hathaway, D.R. Alves, J. Bean, P.P. Esteban, K. Ouadi, J.M. Sutton, A.T.A. Jenkins, Poly (N-isopropylacrylamide-co-allylamine)(PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K, European Journal of Pharmaceutics and Biopharmaceutics, 96 (2015) 437-441.
[11] S. Bagherifard, A. Tamayol, P. Mostafalu, M. Akbari, M. Comotto, N. Annabi, M. Ghaderi, S. Sonkusale, M.R. Dokmeci, A. Khademhosseini, Dermal patch with integrated flexible heater for on demand drug delivery, Advanced healthcare materials, 5(1) (2016) 175-184.
[12] B. Behm, P. Babilas, M. Landthaler, S. Schreml, Cytokines, chemokines and growth factors in wound healing, Journal of the European Academy of Dermatology and Venereology, 26(7) (2012) 812-820.
[13] R.D. Galiano, O.M. Tepper, C.R. Pelo, K.A. Bhatt, M. Callaghan, N. Bastidas, S. Bunting, H.G. Steinmetz, G.C. Gurtner, Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells, The American journal of pathology, 164(6) (2004) 1935-1947.
[14] M.R. Prausnitz, R. Langer, Transdermal drug delivery, Nature biotechnology, 26(11) (2008) 1261.
[15] T.F. Tadros, Fundamental principles of emulsion rheology and their applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91 (1994) 39-55.
[16] S. Takeuchi, P. Garstecki, D.B. Weibel, G.M. Whitesides, An axisymmetric flow‐focusing microfluidic device, Advanced materials, 17(8) (2005) 1067-1072.
[17] Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee, Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab on a Chip, 4(4) (2004) 292-298.
[18] E.R. Lee, Microdrop generation, CRC press, 2018.
[19] L. Martín‐Banderas, M. Flores‐Mosquera, P. Riesco‐Chueca, A. Rodríguez‐Gil, Á. Cebolla, S. Chávez, A.M. Gañán‐Calvo, Flow focusing: a versatile technology to produce size‐controlled and specific‐morphology microparticles, Small, 1(7) (2005) 688-692.