[1] S.-Y. Park, T.-H. Wu, Y. Chen, M.A. Teitell, P.-Y. Chiou, High-speed droplet generation on demand driven by pulse laser-induced cavitation, Lab on a Chip, 11(6) (2011) 1010-1012.
[2] E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels, Droplet microfluidic technology for single-cell high-throughput screening, Proceedings of the National Academy of Sciences, 106(34) (2009) 14195-14200.
[3] J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Köster, H. Duan, Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms, Chemistry & biology, 15(5) (2008) 427-437.
[4] A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A. Demello, J. Edel, Quantitative detection of protein expression in single cells using droplet microfluidics, Chemical communications, (12) (2007) 1218-1220.
[5] L.S. Roach, H. Song, R.F. Ismagilov, Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants, Analytical chemistry, 77(3) (2005) 785-796.
[6] W. Li, H.H. Pham, Z. Nie, B. MacDonald, A. Güenther, E. Kumacheva, Multi-step microfluidic polymerization reactions conducted in droplets: The internal trigger approach, Journal of the American Chemical Society, 130(30) (2008) 9935-9941.
[7] Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics, Biomedical microdevices, 8(3) (2006) 215-225.
[8] B.T. Lau, C.A. Baitz, X.P. Dong, C.L. Hansen, A complete microfluidic screening platform for rational protein crystallization, Journal of the American Chemical Society, 129(3) (2007) 454-455.
[9] L.-H. Hung, K.M. Choi, W.-Y. Tseng, Y.-C. Tan, K.J. Shea, A.P. Lee, Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis, Lab on a Chip, 6(2) (2006) 174-178.
[10] Z.Z. Chong, S.B. Tor, A.M. Gañán-Calvo, Z.J. Chong, N.H. Loh, N.-T. Nguyen, S.H. Tan, Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements, Microfluidics and Nanofluidics, 20(4) (2016) 66.
[11] T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Physical review letters, 86(18) (2001) 4163.
[12] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up, Lab on a Chip, 6(3) (2006) 437-446.
[13] S.-H. Tan, N.-T. Nguyen, L. Yobas, T.G. Kang, Formation and manipulation of ferrofluid droplets at a microfluidic T-junction, Journal of Micromechanics and Microengineering, 20(4) (2010) 045004.
[14] S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using “flow focusing” in microchannels, Applied physics letters, 82(3) (2003) 364-366.
[15] A.M. Gañán-Calvo, Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Physical review letters, 80(2) (1998) 285.
[16] M.A. Herrada, A.M. Gañán-Calvo, Swirl flow focusing: A novel procedure for the massive production of monodisperse microbubbles, Physics of Fluids, 21(4) (2009) 042003.
[17] F. Dutka, A.S. Opalski, P. Garstecki, Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate, Lab on a Chip, 16(11) (2016) 2044-2049.
[18] K. Kang, S.H. Lee, H.S. Ryou, Nanoscale Microscale Thermophys. Eng. Nanoscale Microscale Thermophys. Eng. 10, 217-232, 2006, Nanoscale, 10 (2006) 217-232.
[19] R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics, Reports on progress in physics, 75(1) (2011) 016601.
[20] K.W. Oh, C.H. Ahn, A review of microvalves, Journal of micromechanics and microengineering, 16(5) (2006) R13.
[21] M. Simon, V. Bright, R. Radebaugh, Y. Lee, An analytical model for a piezoelectric axially driven membrane microcompressor for optimum scaled down design, Journal of Mechanical Design, 134(1) (2012).
[22] J. Luo, Y.Q. Fu, Y. Li, X. Du, A. Flewitt, A. Walton, W. Milne, Moving-part-free microfluidic systems for lab-on-a-chip, Journal of Micromechanics and Microengineering, 19(5) (2009) 054001.
[23] W. Zeng, I. Jacobi, D.J. Beck, S. Li, H.A. Stone, Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels, Lab on a Chip, 15(4) (2015) 1110-1115.
[24] B.S. Hardy, K. Uechi, J. Zhen, H.P. Kavehpour, The deformation of flexible PDMS microchannels under a pressure driven flow, Lab on a Chip, 9(7) (2009) 935-938.
[25] K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy, Lab on a Chip, 12(3) (2012) 515-545.
[26] Y.J. Heo, J. Kang, M.J. Kim, W.K. Chung, Tuning-free controller to accurately regulate flow rates in a microfluidic network, Scientific reports, 6 (2016) 23273.
[27] J.B. Christen, A.G. Andreou, Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation, IEEE Transactions on Biomedical Circuits and Systems, 1(1) (2007) 3-18.
[28] E. Miller, M. Rotea, J.P. Rothstein, Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets, Lab on a Chip, 10(10) (2010) 1293-1301.
[29] Y. Kim, B. Kuczenski, P.R. LeDuc, W.C. Messner, Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface, Lab on a Chip, 9(17) (2009) 2603-2609.
[30] Y.J. Heo, J. Kang, W.K. Chung, Robust control for valveless flow switching in microfluidic networks, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 1982-1987.
[31] H. Fu, W. Zeng, S. Li, S. Yuan, Electrical-detection droplet microfluidic closed-loop control system for precise droplet production, Sensors and Actuators A: Physical, 267 (2017) 142-149.
[32] H. Kim, D. Luo, D. Link, D.A. Weitz, M. Marquez, Z. Cheng, Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device, Applied Physics Letters, 91(13) (2007) 133106.
[33] A.S. Basu, Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters, Lab on a Chip, 13(10) (2013) 1892-1901.
[34] Z.Z. Chong, S.H. Tan, A.M. Gañán-Calvo, S.B. Tor, N.H. Loh, N.-T. Nguyen, Active droplet generation in microfluidics, Lab on a Chip, 16(1) (2016) 35-58.