[1] J.A. Grauer, J.E. Hubbard Jr, Flight dynamics and system identification for modern feedback control: avian-inspired robots, Elsevier, 2013.
[2] F. Negrello, P. Silvestri, A. Lucifredi, J.E. Guerrero, A. Bottaro, Preliminary design of a small-sized flapping UAV: II. Kinematic and structural aspects, Meccanica, 51(6) (2016) 1369-1385.
[3] J. Caetano, M. Weehuizen, C. De Visser, G. De Croon, M. Mulder, Rigid-body kinematics versus flapping kinematics of a flapping wing micro air vehicle, Journal of Guidance, Control, and Dynamics, 38(12) (2015) 2257-2269.
[4] W. Send, M. Fischer, K. Jebens, R. Mugrauer, A. Nagarathinam, F. Scharstein, Artificial hinged-wing bird with active torsion and partially linear kinematics, in: Proceeding of 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 2012.
[5] J.E. Guerrero, C. Pacioselli, J.O. Pralits, F. Negrello, P. Silvestri, A. Lucifredi, A. Bottaro, Preliminary design of a small-sized flapping UAV: I. Aerodynamic performance and static longitudinal stability, Meccanica, 51(6) (2016) 1343-1367.
[6] B. Stanford, P. Beran, M. Patil, Optimal flapping-wing vehicle dynamics via floquet multiplier sensitivities, Journal of Guidance, Control, and Dynamics, 36(2) (2013) 454-466.
[7] B.K. Chandrasekaran, Design of an adaptive flight controller for a bird-like flapping wing aircraft, Wichita State University, 2017.
[8] W. Maybury, J. Rayner, L. Couldrick, Lift generation by the avian tail, Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1475) (2001) 1443-1448.
[9] M.L. Anderson, R.G. Cobb, Toward flapping wing control of micro air vehicles, Journal of guidance, control, and dynamics, 35(1) (2012) 296-308.
[10] J.E. Bluman, C.-K. Kang, Y. Shtessel, Control of a flapping-wing micro air vehicle: sliding-mode approach, Journal of Guidance, Control, and Dynamics, 41(5) (2018) 1223-1226.
[11] A. Banazadeh, N. Taymourtash, Adaptive attitude and position control of an insect-like flapping wing air vehicle, Nonlinear Dynamics, 85(1) (2016) 47-66.
[12] W. He, X. Mu, Y. Chen, X. He, Y. Yu, Modeling and vibration control of the flapping-wing robotic aircraft with output constraint, Journal of Sound and Vibration, 423 (2018) 472-483.
[13] W. He, T. Meng, X. He, C. Sun, Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances, IEEE transactions on cybernetics, 49(4) (2018) 1524-1535.
[14] S. Armanini, J. Caetano, C. De Visser, M. Pavel, G. De Croon, M. Mulder, Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle, International Journal of Micro Air Vehicles, 11 (2019) 1756829319833674.
[15] J.V. Caetano, C. De Visser, G. De Croon, B. Remes, C. De Wagter, J. Verboom, M. Mulder, Linear aerodynamic model identification of a flapping wing mav based on flight test data, International Journal of Micro Air Vehicles, 5(4) (2013) 273-286.
[16] S. Armanini, C. De Visser, G. De Croon, M. Mulder, Time-varying model identification of flapping-wing vehicle dynamics using flight data, Journal of Guidance, Control, and Dynamics, 39(3) (2016) 526-541.
[17] S.S. Baek, R.S. Fearing, Flight forces and altitude regulation of 12 gram i-bird, in: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2010, pp. 454-460.
[18] J. Grauer, E. Ulrich, J. Hubbard, S. Humbert, D. Pines, Model structure determination of an ornithopter aerodynamics model from flight data, in: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, pp. 41.
[19] S. Shams, B. Mirzavand Boroujeni, S.M. Mansoori, M.R. Kazemi, Kinematic analysis of articulated flapping wings mechanisms considering nonlinear quasi-steady aerodynamic, Modares Mechanical Engineering, 17(12) (2018) 87-97.
[20] C. Altenbuchner, J.E. Hubbard Jr, Modern Flexible Multi-Body Dynamics Modeling Methodology for Flapping Wing Vehicles, Academic Press, 2017.
[21] D. Tang, H. Zhu, W. Yuan, Z. Fan, M. Lei, Measuring the flexibility matrix of an eagle’s flight feather and a method to estimate the stiffness distribution, Chinese Physics B, 28(7) (2019) 074703.
[22] S.B. Skaar, Robot Modeling and Control-[Book review; M. Spong, S. Hutchinson, and M. Vidyasagar], IEEE Transactions on Automatic Control, 52(2) (2007) 378-379.
[23] V.A. Tucker, Gliding birds: reduction of induced drag by wing tip slots between the primary feathers, Journal of experimental biology, 180(1) (1993) 285-310.