[1] M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renewable Energy, 60 (2013) 313-322.
[2] M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Conversion and Management, 76 (2013) 561-570.
[3] M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, M.A. Barranco-Jimenez, Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm, Energy conversion and Management, 75 (2013) 438-445.
[4] G. Walker, Stirling engines, (1980).
[5] T. Finkelstein, Air engines: the history, science, and reality of the perfect engine/Theodor Finkelstein, Allan J, Organ, (2001).
[6] G. Schmidt, The theory of Lehmann's calorimetric machine, Zeitschrift Des Vereines Deutscher Ingenieure, 15(1) (1871) 98-112.
[7] I. Urieli, D.M. Berchowitz, Stirling cycle engine analysis, A. Hilger Bristol, UK, 1984.
[8] M. Babaelahi, H. Sayyaadi, Simple-II: a new numerical thermal model for predicting thermal performance of Stirling engines, Energy, 69 (2014) 873-890.
[9] C. Cheng, Y. Chen, Numerical simulation of thermofluid dynamics of a 1-kW beta-type Stirling engine”, in: The 9th International Conference on Advanced Computational Engineering and Experimenting (ACEX2015), June 29 to July 2, 2015, Munich, Germany, 2005.
[10] J.L. Salazar, W.-L. Chen, A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine, Energy conversion and management, 88 (2014) 177-188.
[11] C.-H. Cheng, Y.-J. Yu, Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models, Renewable energy, 36(2) (2011) 714-725.
[12] C.-H. Cheng, Y.-J. Yu, Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism, Renewable energy, 37(1) (2012) 161-173.
[13] L. Scollo, P. Valdez, S. Santamarina, M. Chini, J. Baron, Twin cylinder alpha stirling engine combined model and prototype redesign, International journal of hydrogen energy, 38(4) (2013) 1988-1996.
[14] M. Afzali Ashkezari, Dynamic analysis of a v-type slider-crank mechanism in Stirling engine, Tarbiat Modares University, Iran, 2014 (in Persian).
[15] S. Toghyani, A. Kasaeian, S.H. Hashemabadi, M. Salimi, Multi-objective optimization of GPU3 Stirling engine using third order analysis, Energy Conversion and Management, 87 (2014) 521-529.
[16] C. Duan, X. Wang, S. Shu, C. Jing, H. Chang, Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm, Energy Conversion and Management, 84 (2014) 88-96.
[17] G. Xiao, U. Sultan, M. Ni, H. Peng, X. Zhou, S. Wang, Z. Luo, Design optimization with computational fluid dynamic analysis of β-type Stirling engine, Applied Thermal Engineering, 113 (2017) 87-102.
[18] J. Egas, D.M. Clucas, Stirling engine configuration selection, Energies, 11(3) (2018) 584.
[19] A. Rahmati, S. Varedi-Koulaei, M. Ahmadi, H. Ahmadi, Dimensional synthesis of the Stirling engine based on optimizing the output work by evolutionary algorithms, Energy Reports, 6 (2020) 1468-1486.
[20] H. Hachem, R. Gheith, F. Aloui, S.B. Nasrallah, Technological challenges and optimization efforts of the Stirling machine: A review, Energy conversion and management, 171 (2018) 1365-1387.
[21] D. Thombare, S. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, 12(1) (2008) 1-38.
[22] S.S. Rao, Engineering optimization: theory and practice, John Wiley & Sons, 2019.
[23] A. Sardashti, H. Daniali, S. Varedi, Optimal free-defect synthesis of four-bar linkage with joint clearance using PSO algorithm, Meccanica, 48(7) (2013) 1681-1693.
[24] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, in: 2007 IEEE congress on evolutionary computation, Ieee, 2007, pp. 4661-4667.