[1] X.T. Liu, Z.H. Chen, C.B. Zhang, J. Wu, A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation, Appl. Energy 123 (2014) 263–272.
[2] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, Journal of power sources, 226 (2013) 272-288.
[3] T. Wang, K. Tseng, J. Zhao, Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model, Applied Thermal Engineering, 90 (2015) 521-529.
[4] T. Zhang, Q. Gao, G. Wang, Y. Gu, Y. Wang, W. Bao, D. Zhang, Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process, Applied Thermal Engineering, 116 (2017) 655-662.
[5] R. Zhao, J. Gu, J. Liu, An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries, Journal of power sources, 273 (2015) 1089-1097.
[6] B. Coleman, J. Ostanek, J. Heinzel, Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions, Applied energy, 180 (2016) 14-26.
[7] D.-w. Yoo, Y.K. Joshi, Energy efficient thermal management of electronic components using solid-liquid phase change materials, IEEE Transactions on Device and Materials Reliability, 4(4) (2004) 641-649.
[8] B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied thermal engineering, 23(3) (2003) 251-283.
[9] P. Arndt, J. Dunn, R. Willix, Organic compounds as candidate phase change materials in thermal energy storage, Thermochimica acta, 79 (1984) 55-68.
[10] S. Shi, Y. Xie, M. Li, Y. Yuan, J. Yu, H. Wu, B. Liu, N. Liu, Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials, Energy Conversion and Management, 138 (2017) 84-96.
[11] A. Elgafy, K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon, 43(15) (2005) 3067-3074.
[12] F. Bahiraei, A. Fartaj, G.-A. Nazri, Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications, Energy Conversion and Management, 153 (2017) 115-128.
[13] D.D.W. Rufuss, L. Suganthi, S. Iniyan, P. Davies, Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity, Journal of Cleaner Production, 192 (2018) 9-29.
[14] Z. Wang, X. Li, G. Zhang, Y. Lv, C. Wang, F. He, C. Yang, C. Yang, Thermal management investigation for lithium-ion battery module with different phase change materials, RSC advances, 7(68) (2017) 42909-42918.
[15] R. Mahamud, C. Park, Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity, Journal of Power Sources, 196(13) (2011) 5685-5696.
[16] H. Park, A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles, Journal of power sources, 239 (2013) 30-36.
[17] T.-H. Tran, S. Harmand, B. Sahut, Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery, Journal of power sources, 265 (2014) 262-272.
[18] G. Fang, Y. Huang, W. Yuan, Y. Yang, Y. Tang, W. Ju, F. Chu, Z. Zhao, Thermal management for a tube–shell Li-ion battery pack using water evaporation coupled with forced air cooling, RSC advances, 9(18) (2019) 9951-9961.
[19] C. Lian, Y. Wang, Q. Li, H. Li, X. He, Numerical investigation on the performance of microencapsulated phase change material suspension applied to liquid cold plates, Numerical Heat Transfer, Part A: Applications, 75(5) (2019) 342-358.
[20] J. Liang, Y. Gan, Y. Li, Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures, Energy Conversion and Management, 155 (2018) 1-9.
[21] M. Kiani, M. Ansari, A.A. Arshadi, E. Houshfar, M. Ashjaee, Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach, Journal of Thermal Analysis and Calorimetry, (2020) 1-13.
[22] M. Mashayekhi, E. Houshfar, M. Ashjaee, Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries, Applied thermal engineering, doi: https://doi.org/10.1016/j.applthermaleng.2020.115543
[23] A. Hussain, I.H. Abidi, C.Y. Tso, K.C. Chan, Z. Luo, C.Y. Chao, Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials, International journal of thermal sciences, 124 (2018) 23-35.
[24] M. Mehrabi-Kermani, E. Houshfar, M. Ashjaee, A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection, International Journal of Thermal Sciences, 141 (2019) 47-61.
[25] Y.S. Ranjbaran, S.J. Haghparast, M. Shojaeefard, G. Molaeimanesh, Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries, Journal of Thermal Analysis and Calorimetry, (2019) 1-23.
[26] J. Zhang, X. Li, F. He, J. He, Z. Zhong, G. Zhang, Experimental investigation on thermal management of electric vehicle battery module with paraffin/expanded graphite composite phase change material, International Journal of Photoenergy, 2017 (2017).
[27] Z. Ling, F. Wang, X. Fang, X. Gao, Z. Zhang, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling, Applied energy, 148 (2015) 403-409.
[28] Y. Zhao, B. Zou, C. Li, Y. Ding, Active cooling based battery thermal management using composite phase change materials, Energy Procedia, 158 (2019) 4933-4940.