[1] S. Tibbits, The emergence of ‘4D printing,’ in TED conference, (2013).
[2] S. Tibbits, 4D printing: Multi-material shape change, Archit. Des., 84)1( (2014) 116–121.
[3] Y. Zhang et al., Printing, folding and assembly methods for forming 3D mesostructures in advanced materials, Nat. Rev. Mater., 2(4) (2017).
[4] Y. Y. C. Choong, S. Maleksaeedi, H. Eng, J. Wei, and P. C. Su, 4D printing of high performance shape memory polymer using stereolithography, Mater. Des., 126(5) (2017) 219–225.
[5] A. I. Egunov, J. G. Korvinkb, and V. A. Luchnikov, Polydimethylsiloxane bilayer films with an embedded spontaneous curvature, Soft Matter, 12(2) (2016) 45–52.
[6] A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A. Lewis, Biomimetic 4D printing, Nat. Mater. 15(4) (2016) 413–418.
[7] Z. Zhao, J. Wu, X. Mu, H. Chen, H. J. Qi, and D. Fang, Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing, Macromol. Rapid Commun. 38(13) (2017) 1–6.
[8] Y. Liu et al., Programmable responsive shaping behavior induced by visible multi-dimensional gradients of magnetic nanoparticles, Soft Matter, 8(3) (2012) 3295–3299.
[9] T. van Manen, S. Janbaz, and A. A. Zadpoor, Programming the shape-shifting of flat soft matter, Mater. Today, vol. 21(2) (2018) 144–163.
[10] A. Mitchell, U. Lafont, M. Ho, and C. Semprimoschnig, Additive manufacturing — A review of 4D printing and future applications, Addit. Manuf., 24 (2018) 606–626.
[11] L. Sun et al., stimulus-responsive shape memory materials: a review, Mater. Des., 33 (2012) 577–640.
[12] J. E. M. Teoh, J. An, X. Feng, Y. Zhao, C. K. Chua, and Y. Liu, Design and 4D printing of cross-folded origami structures: A preliminary investigation, Materials (Basel)., 11(3) (2018).
[13] Z. Ding, C. Yuan, X. Peng, T. Wang, H. J. Qi, and M. L. Dunn, Direct 4D printing via active composite materials, Sci. Adv., 3(4) (2017).
[14] J. Wu et al., Multi-shape active composites by 3D printing of digital shape memory polymers., Sci. Rep., 6(3) (2016) 22-34.
[15] Y. Mao, K. Yu, M. S. Isakov, J. Wu, M. L. Dunn, and H. Jerry Qi, Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers, Sci. Rep., 5(1) (2015) 13-19.
[16] H. Wei, Q. Zhang, Y. Yao, L. Liu, Y. Liu, and J. Leng, Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite, ACS Appl. Mater. Interfaces, 9(1) (2017) 876–883.
[17] Q. Ge, A. H. Sakhaei, H. Lee, C. K. Dunn, N. X. Fang, and M. L. Dunn, Multimaterial 4D Printing with Tailorable Shape Memory Polymers, Sci. Rep. 6(1) (2016)11-21.
[18] D. Kokkinis, M. Schaffner, and A. R. Studart, Multimaterial magnetically assisted 3D printing of composite materials, Nat. Commun., 6 (2015) 8643.
[19] S. Naficy, R. Gately, R. Gorkin, H. Xin, and G. M. Spinks, 4D Printing of Reversible Shape Morphing Hydrogel Structures, Macromol. Mater. Eng., 302(1) (2017) 1–9.
[20] S. E. Bakarich, R. G. Iii, and G. M. Spinks, 4D Printing with Mechanically Robust , Thermally Actuating Hydrogels, Macromol. Rapid Commun., 2(3) (2015) 1–7.
[21] S. K. Leist, D. Gao, R. Chiou, and J. Zhou, Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles, Virtual Phys. Prototyp., 12(4) (2017) 290–300.
[22] D. Schmelzeisen, H. Koch, C. Pastore, and T. Gries, 4D Textiles: Hybrid Textile Structures that Can Change Structural Form with Time by 3D Printing, Narrow Smart Text., (2018) 189–201.
[23] W. Wang, C. Yuk, P. Antonio, A. Serrano, and S. Ahn, Soft grasping mechanisms composed of shape memory polymer based self- bending units, Compos. Part B, 164(6) (2019) 198–204.
[24] W. Zhang et al., Shape memory behavior and recovery force of 4D printed textile functional composites, Compos. Sci. Technol., vol. 160(3) (2018) 224–230, 2018.
[25] G. F. Hu, A. R. Damanpack, M. Bodaghi, and W. H. Liao, Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling, Smart Mater. Struct., 26(12) (2017).
[26] M. Bodaghi, A. Serjouei, A. Zolfagharian, M. Fotouhi, H. Rahman, and D. Durand, Reversible energy absorbing meta-sandwiches by FDM 4D printing, Int. J. Mech. Sci., 173 (2020) 145-158.
[27] T. Liu, L. Liu, C. Zeng, Y. Liu, and J. Leng, 4D printed anisotropic structures with tailored mechanical behaviors and shape memory effects, Compos. Sci. Technol., 186 (2020) 107935.
[28] R. Mitkus, Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structures, Smart Mater. Struct., 28 (2019).
[29] Q. Zhang, K. Zhang, and G. Hu, Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique., Sci. Rep., 6 (2016) 22431.
[30] S. T. Ly and J. Y. Kim, 4D printing – fused deposition modeling printing with thermal-responsive shape memory polymers, Int. J. Precis. Eng. Manuf. - Green Technol., 4(3) (2017) 267–272.
[31] J. E. M. Teoh, Y. Zhao, J. An, C. K. Chua, and Y. Liu, Multi-stage Responsive 4D Printed Smart Structure through Varying Geometric Thickness of Shape Memory Polymer, Smart Mater. Struct., 26(12) (2017).
[32] Y. Yang, Y. Chen, Y. Wei, and Y. Li, “3D printing of shape memory polymer for functional part fabrication,” Int. J. Adv. Manuf. Technol., 84(12) (2016) 2079–2095.
[33] T. van Manen, S. Janbaz, and A. A. Zadpoor, Programming 2D/3D shape-shifting with hobbyist 3D printers, Mater. Horiz., 4 (2017) 1064-1069.
[34] F. Momeni, S. M.Mehdi Hassani.N, X. Liu, and J. Ni, A review of 4D printing, Mater. Des., 122 (2017) 42–79.
[35] ASTM D 638 -02a, Standard test method for tensile properties of plastics, (2003).
[36] C. A. Murphy and M. N. Collins, Microcrystalline Cellulose Reinforced Polylactic Acid Biocomposite Filaments for 3D Printing, Polym. Compos., (2016) 1–10.