[1] M. Yamanouchi, M. Koizumi, T. Hirai, I. Shiota, Proceedings of the first international symposium on functionally gradient materials, Japan, (1990).
[2] M. Koizumi, The concept of FGM, ceramic transactions, functionally gradient materials, 3(1) (1993) 3-10.
[3] S.B. Kim, M.Y. Kim, Improved formulation for spatial stability and free vibration of thin-walled tapered beams and space frames, Eng Struct, 22 (2000) 446–58.
[4] C.N. Chen, Dynamic equilibrium of non-prismatic beams defined on an arbitrarily selected co-ordinate system. J Sound Vib, 230(2) (2000) 241–260.
[5] R.D. Ambrosini, J.D. Riera, R.F. Danesi, A modified Vlasov theory for dynamic analysis of thin-walled and variable open section beams, Eng. Struct. 22 (8) (2000) 890–900.
[6] J. Li, R. Shen, H. Hua, X. Jin, Coupled bending and torsional vibration of axially loaded thin-walled Timoshenko beams, Int. J. Mech. Sci. 46 (2) (2004) 299–320.
[7] Jun L, Wanyou L, Rongying S, Hongxing H. Coupled bending and torsional vibration of non-symmetrical axially loaded thin-walled Bernoulli–Euler beam. Mechanics Research Communications 2004; 31:697–711.
[8] A.Y.T. Leung, Exact dynamic stiffness for axial-torsional buckling of structural frames, Thin-Walled Structures, 46 (2008) 1–10.
[9] F. Borbon, A. Mirasso, D. Ambrosini, Beam element for coupled torsional-flexural vibration of doubly unsymmetrical thin walled beams axially loaded, Computers and Structures, 89 (2011) 1406-1416.
[10] H.S. Shen, ZX. Wang, Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates. Composite Structure. 94(7) (2012) 2197-2208.
[11] A. Andrade, One Dimensional Models for the Spatial Behaviour of Tapered Thin-walled Bars with Open cross sections: Static, Dynamic and Buckling Analyses (Ph.D. Thesis), University of Coimbra, Portugal, 2012.
[12] K.K. Pradhan, S. Chakraverty, Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method, Composite. Part B, 51(2013) 175–184.
[13] K.K. Pradhan, S. Chakraverty, Effects of different shear deformation theories on free vibration of functionally graded beams, International Journal of Mechanical Sciences, 82 (2014) 149–160.
[14] M. Jabbarzadeh, M.K. Baghdar Delgosha, Thermal buckling analysis of FGM sector plates using differential quadrature method. Modares Mechanical Engineering, 13(2) (2013) 33-45.
[15] M. Jabbarzadeh, J.J. Eskandari, M. Khosravi, The analysis of thermal buckling of circular plates of variable thickness from functionally graded materials .
Modares Mechanical Engineerin Journal.12(5) (2013) 59-73. (In Persian)
[16] Y. Huang, L.E. Yang, Q.Z. Luo, Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section, Composites: Part B:, Engineering, 45(1) (2013) 1493-1498.
[17] Y. Zhao, Y. Huang, M. Guo, A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory, Composite Structures, 168 (2017) 277-284.
[18] F. Mohri, S.A Meftah, N. Damil, A large torsion beam finite element model for tapered thin-walled open cross-sections beams, Engineering Structures, 99 (2015) 132-148.
[19] P. Ruta, J. Szybinski, Lateral stability of bending non-prismatic thin-walled beams using orthogonal series, Procedia Engineering, 11 (2015) 694-701.
[20] J. Kuś, Lateral-torsional buckling steel beams with simultaneously tapered flanges and web, Steel and Composite Structures, 19(4) (2015) 897-916.
[21] K. Khorshidi, A. Bakhsheshi H. Ghadirian, The study of the effects of thermal environment on free vibration analysis of two dimensional functionally graded rectangular plates on Pasternak elastic,
Journal of Solid and Fluid Mechanics, 6(3) (2016) 137-147.
[22] A. Paul, D. Das, Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness. Engineering science and technology, an international journal, 19(3) (2016) 1608-1625.
[23] S.T. Dennis, K.W. Jones, Flexural-torsional vibration of a tapered C-section beam, J. Sound Vib. 393 (2017) 401–414.
[24] T-T. Nguyen, N-I. Kim, J. Lee, Free vibration of thin-walled functionally graded open-section beams, Composite structures, 95 (2016) 105-116.
[25] T-T. Nguyen, N-I. Kim, J. Lee, Analysis of thin-walled open section beams with functionally graded materials, Composite structures, 138 (2016) 75-83.
[26] T-T. Nguyen, P.T. Thang, J. Lee, Lateral buckling analysis thin-walled functionally graded beams,” Composite structures, 160 (2017) 952-963.
[27] T-T. Nguyen, P.T. Thang, J. Lee, Flexural-torsional stability of thin-walled functionally graded open-section beams, Thin walled structures, 110 (2017) 88-96.
[28] W. Chen, H. Chang, Closed-form solutions for free vibration frequencies of functionally graded Euler-Bernoulli beams, Mechanics of Composite Materials, 53(1) (2017) 79-98.
[29] S.B. Beheshti-Aval, M. Lezgy-Nazargah, A coupled refined high-order global– local theory and finite element model for static electromechanical response of smart multilayered/ sandwich beams, Archive of Applied Mechanic, 82 (2012) 1709-1752.
[30] M. Lezgy-Nazargah, S.B. Beheshti-Aval, Coupled refined layerwise theory for dynamic free and forced responses of piezoelectric laminated composite and sandwich beams, Meccanica, 48(6) (2013) 1479–1500.
[31] M. Lezgy-Nazargah, Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers, Mechanics of Advanced Materials and Structures, 23(3) (2016) 337-352.
[32] M. Lezgy-Nazargah, A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members, Thin-Walled Structures, 115 (2017) 48-57.
[33] M. Soltani, B. Asgarian, Buckling Analysis of Axially Functionally Graded Beams with Variable Cross-Section, Modares Civil Engineering Journal, 18 (3) (2018) 87-99 (In Persian).
[34] M. R-Pajand, A.R. Masoodi, A. Alepaighambar, Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing, Steel and Composite Structures, 28 (2018) 403-414.
[35] M. Soltani, B. Asgarian, F. Mohri, Improved finite element formulation for lateral stability analysis of axially functionally graded non-prismatic I-beams, International Journal of Structural Stability and dynamics, 19(9) (2019) 1950108.
[36] S. Rajasekaran, H.B Khaniki, H.B, Bi-directional functionally graded thin-walled non-prismatic Euler beams of generic open/closed cross section Part I/II: Theoretical formulations, Thin-Walled Structures, (2019).
[37] H. Li, B. Balachandran, Buckling and free oscillations of composite microresonators, Journal of Microelectromechanical Systems, 15(1) (2006) 42-51.
[38] M.A. Steinberg, Materials for aerospace, Scientific American 255(4) (1986) 59–64.
[39] C. Lyu, W. Chen, R. Xu, C.W. Lim, Semi-analytical elasticity solutions for bi-directional functionally graded beams, International Journal of Solids and Structures, 45(1) (2008) 258–275.
[40] A. Sears, R.C. Batra, Macroscopic properties of carbon nanotubes from molecular-mechanics simulations, Physical Review, 69(23) (2004) 235406.
[41] Winkler E. Die Lehre von Elastizitat und Festigkeit (“The theory of elasticity and stiffness”). H. Domenicus. Prague. (1867) (In German).
[42] V.Z. Vlasov, Thin-Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem (1961).
[43] Y.Y. Yung, D. Munz, Stress analysis in a two materials joint with a functionally graded material. In: Shiota, T., Miyamoto, M.Y. (Eds.), Functionally Graded Material, (1996) 41–46.
[44] Z. H. Jin and G. H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, International Journal of Fracture 107 (2001) 73–98.
[45] A. Shahba, R. Attarnejad, M. Tavanaie Marvi and S. Hajilar, Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions, Composites: Part B. 42(4) (2011) 801-808.
[46] F. Delale and F. Erdogan. The crack problem for a nonhomogeneous plane, ASME J Appl Mech, 50 (1983) 609–614.
[47] N. Kim II, S.S. Jeon, M.Y. Kim, An improved numerical method evaluating exact static element stiffness matrices of thin-walled beam-columns on elastic foundations, Computers and structures, 83(23-24) (2005) 2003-2022.
[48] Bert C.W., Malik M., 1996, Differential quadrature method in computational mechanics, a review, Applied Mechanics Reviews 49: 1-28.
[49] Shu C. Differential Quadrature and Its Application in Engineering. Sprimger; 2000.
[50] Zong Z, Zhang Y. Advanced Differential Quadrature Methods. Chapman & Hall/CRC; 2009.
[51] M. Soltani, B. Asgarian, F. Mohri, Elastic instability and free vibration analyses of tapered thin-walled beams by power series method, Journal of constructional steel research, 96 (2014) 106-126.
[52] ANSYS, Version 5.4, Swanson Analysis System, Inc, 2007.