[1] K.K. Jain, Drug delivery systems-an overview, in: Drug delivery systems, Springer, 2008, pp. 1-50.
[2] Y.-N. Wang, L.-M. Fu, Micropumps and biomedical applications–A review, Microelectronic Engineering, 195 (2018) 121-138.
[3] C. Joshitha, B. Sreeja, S. Radha, A review on micropumps for drug delivery system, in: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, 2017, pp. 186-190.
[4] R.R. Gidde, P.M. Pawar, V.P. Dhamgaye, Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application, Microsystem Technologies, 26(2) (2020) 633-645.
[5] K.S. Rao, M. Hamza, P.A. Kumar, K.G. Sravani, Design and optimization of MEMS based piezoelectric actuator for drug delivery systems, Microsystem Technologies, (2019) 1-9.
[6] H. Lee, H. Choi, M. Lee, S. Park, Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus, Biomedical Microdevices, 20(4) (2018) 103.
[7] X. Guo, Z. Luo, H. Cui, J. Wang, Q. Jiang, A novel and reproducible release mechanism for a drug-delivery system in the gastrointestinal tract, Biomedical microdevices, 21(1) (2019) 25.
[8] F. Forouzandeh, Implantable Microsystem Technologies For Nanoliter-Resolution Inner Ear Drug Delivery, (2019).
[9] Y. Guan, Performance Analysis of a Microfluidic Pump Based on Combined Actuation of the Piezoelectric Effect and Liquid Crystal Backflow Effect, Micromachines, 10(9) (2019) 584.
[10] N.-C. Tsai, C.-Y. Sue, Review of MEMS-based drug delivery and dosing systems, Sensors and Actuators A: Physical, 134(2) (2007) 555-564.
[11] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sensors and Actuators B: Chemical, 130(2) (2008) 917-942.
[12] F. Amirouche, Y. Zhou, T. Johnson, Current micropump technologies and their biomedical applications, Microsystem technologies, 15(5) (2009) 647-666.
[13] J.L. Thomas, S. Bessman, Prototype for an implantable micropump powdered by piezoelectric disk benders, Transactions-American Society for Artificial Internal Organs, 21 (1975) 516-522.
[14] J. Smits, N. Vitafin, Piezo-electrical micropump, European patent EP0134614, Netherlands, (1984).
[15] J.G. Smits, Piezoelectric micropump with three valves working peristaltically, Sensors and Actuators A: Physical, 21(1-3) (1990) 203-206.
[16] T. Bourouina, A. Bossebuf, J.-P. Grandchamp, Design and simulation of an electrostatic micropump for drug-delivery applications, Journal of Micromechanics and Microengineering, 7(3) (1997) 186.
[17] M.M. Teymoori, E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications, Sensors and Actuators A: Physical, 117(2) (2005) 222-229.
[18] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, A bidirectional silicon micropump, Sensors and Actuators A: Physical, 50(1-2) (1995) 81-86.
[19] J. Johari, J. Yunas, A.A. Hamzah, B.Y. Majlis, Piezoelectric micropump with nanoliter per minute flow for drug delivery systems, Sains Malaysiana, 40(3) (2011) 275-281.
[20] P.-H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G. Le Rhun, Y. Fouillet, E. Defay, A low voltage silicon micro-pump based on piezoelectric thin films, Sensors and Actuators A: Physical, 250 (2016) 35-39.
[21] A. Geipel, A. Doll, F. Goldschmidtboing, P. Jantscheff, N. Esser, U. Massing, P. Woias, Pressure-independent micropump with piezoelectric valves for low flow drug delivery systems, in: 19th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, 2006, pp. 786-789.
[22] D. Maillefer, H. van Lintel, G. Rey-Mermet, R. Hirschi, A high-performance silicon micropump for an implantable drug delivery system, in: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), IEEE, 1999, pp. 541-546.
[23] B. Ma, S. Liu, Z. Gan, G. Liu, X. Cai, H. Zhang, Z. Yang, A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery, in: 56th Electronic Components and Technology Conference 2006, IEEE, 2006, pp. 5 pp.
[24] K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, W. Boda, Design and test of a high-performance piezoelectric micropump for drug delivery, Sensors and Actuators A: Physical, 121(1) (2005) 156-161.
[25] N.A. Hamid, B.Y. Majlis, J. Yunas, A. Syafeeza, Y.C. Wong, M. Ibrahim, A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications, Microsystem Technologies, 23(9) (2017) 4037-4043.
[26] S.R. Hwang, W.Y. Sim, G.Y. Kim, S.S. Yang, J.J. Pak, Fabrication and test of a submicroliter-level thermopneumatic micropump for transdermal drug delivery, in: 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, IEEE, 2005, pp. 143-145.
[27] O.C. Jeong, S.W. Park, S.S. Yang, J.J. Pak, Fabrication of a peristaltic PDMS micropump, Sensors and Actuators A: Physical, 123 (2005) 453-458.
[28] S. Guo, T. Fukuda, SMA actuator-based novel type of micropump for biomedical application, in: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, IEEE, 2004, pp. 1616-1621.
[29] M.E. Tawfik, F.J. Diez, Maximizing fluid delivered by bubble‐free electroosmotic pump with optimum pulse voltage waveform, Electrophoresis, 38(5) (2017) 563-571.
[30] A. Kabata, H. Suzuki, Y. Kishigami, M. Haga, Micro system for injection of insulin and monitoring of glucose concentration, in: SENSORS, 2005 IEEE, IEEE, 2005, pp. 4 pp.
[31] K.-H. Heng, W. Wang, M.C. Murphy, K. Lian, UV-LIGA microfabrication and test of an AC-type micropump based on the magnetohydrodynamic (MHD) principle, in: Microfluidic Devices and Systems III, International Society for Optics and Photonics, 2000, pp. 161-171.
[32] A.V. Lemoff, A.P. Lee, An AC magnetohydrodynamic micropump, Sensors and Actuators B: Chemical, 63(3) (2000) 178-185.
[33] J. Jang, S.S. Lee, Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sensors and Actuators A: Physical, 80(1) (2000) 84-89.
[34] L. Huang, W. Wang, M. Murphy, K. Lian, Z.-G. Ling, LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump, Microsystem technologies, 6(6) (2000) 235-240.
[35] A. Homsy, V. Linder, F. Lucklum, N.F. de Rooij, Magnetohydrodynamic pumping in nuclear magnetic resonance environments, Sensors and Actuators B: Chemical, 123(1) (2007) 636-646.
[36] B. Nguyen, S.K. Kassegne, High-current density DC magenetohydrodynamics micropump with bubble isolation and release system, Microfluidics and Nanofluidics, 5(3) (2008) 383-393.
[37] S. Lim, B. Choi, A study on the MHD (magnetohydrodynamic) micropump with side-walled electrodes, Journal of mechanical science and technology, 23(3) (2009) 739-749.
[38] D. Chatterjee, S. Amiroudine, Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump, Biomedical microdevices, 13(1) (2011) 147-157.
[39] A.V. Lemoff, A.P. Lee, An AC magnetohydrodynamic microfluidic switch for micro total analysis systems, Biomedical Microdevices, 5(1) (2003) 55-60.
[40] J. West, B. Karamata, B. Lillis, J.P. Gleeson, J. Alderman, J.K. Collins, W. Lane, A. Mathewson, H. Berney, Application of magnetohydrodynamic actuation to continuous flow chemistry, Lab on a Chip, 2(4) (2002) 224-230.
[41] W. Ritchie, XIII. Experimental researches in voltaic electricity and electro-magnetism, Philosophical transactions of the royal society of London, (122) (1832) 279-298.
[42] J.B. Friauf, Electromagnetic ship propulsion, Journal of the American Society for Naval Engineers, 73(1) (1961) 139-142.
[43] O.M. Phillips, The prospects for magnetohydrodynamic ship propulsion, Journal of ship research, 43 (1962) 43-51.
[44] R.S. Baker, M.J. Tessier, Handbook of electromagnetic pump technology, (1987).
[45] K. Hosokawa, I. Shimoyama, H. Miura, Study of MHD(magnetohydrodynamic) micropump, Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 59(557) (1993) 205-210.
[46] J. Koryta, J. Dvořák, L. Kavan, Principles of electrochemistry, John Wiley & Sons Inc, 1993.
[47] K. Ito, T. Takahashi, T. Fujino, M. Ishikawa, Influences of channel size and operating conditions on fluid behavior in a MHD micro pump for micro total analysis system, Journal of International Council on Electrical Engineering, 4(3) (2014) 220-226.
[48] J. Lu, D.-J. Li, L.-L. Zhang, Y.-X. Wang, Numerical simulation of salt water electrolysis in parallel-plate electrode channel under forced convection, Electrochimica Acta, 53(2) (2007) 768-776.
[49] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, 6(2) (2002) 182-197.