[1] J. Covington, J. Gardner, A. Hamilton, T. Pearce, S. Tan, Towards a truly biomimetic olfactory microsystem: an artificial olfactory mucosa, IET nanobiotechnology, 1(2) (2007) 15-21.
[2] R.W. Cernosek, S.J. Martin, A.R. Hillman, H.L. Bandey, Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 45(5) (1998) 1399-1407.
[3] B. Drafts, Acoustic Wave Technology Sensors-Acoustic wave sensors are extremely versatile devices that are just beginning to realize their commercial potential. This tutorial addresses acoustic wave sensor, Sensors-the Journal of Applied Sensing Technology, 17(10) (2000) 68-71.
[4] G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nature biotechnology, 19(9) (2001) 856.
[5] R. Abdolvand, B. Bahreyni, J. Lee, F. Nabki, Micromachined resonators: A review, Micromachines, 7(9) (2016) 160.
[6] M. Spletzer, A. Raman, H. Sumali, J.P. Sullivan, Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays, Applied Physics Letters, 92(11) (2008) 114102.
[7] N.H. Saad, M.C. Ward, R. Al-Dadah, C. Anthony, B. Choubey, S. Collins, Performance Analysis of A Coupled Micro Resonator Array Sensor, Eurosensors XXII, Dresden, Germany, (2008) 60-63.
[8] W. Xu, S. Choi, J. Chae, A contour-mode film bulk acoustic resonator of high quality factor in a liquid environment for biosensing applications, Applied Physics Letters, 96(5) (2010) 053703.
[9] C. Vančura, J. Lichtenberg, A. Hierlemann, F. Josse, Characterization of magnetically actuated resonant cantilevers in viscous fluids, Applied Physics Letters, 87(16) (2005) 162510.
[10] P. Peiker, S. Klingel, J. Menges, H.-J. Bart, E. Oesterschulze, A partially wettable micromechanical resonator for chemical-and biosensing in solution, Procedia Engineering, 168 (2016) 606-609.
[11] T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis, Weighing of biomolecules, single cells and single nanoparticles in fluid, nature, 446(7139) (2007) 1066-1069.
[12] A. Rahafrooz, S. Pourkamali, Characterization of rotational mode disk resonator quality factors in liquid, in: 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, IEEE, 2011, pp. 1-5.
[13] F. Castonguay, Increasing the quality factor of microcantilevers in a fluid environment, McGill University Library, 2010.
[14] C. Vančura, I. Dufour, S.M. Heinrich, F. Josse, A. Hierlemann, Analysis of resonating microcantilevers operating in a viscous liquid environment, Sensors and Actuators A: Physical, 141(1) (2008) 43-51.
[15] J. Crassous, C. Gabay, G. Liogier, B. Berge, Liquid lens based on electrowetting: a new adaptive component for imaging applications in consumer electronics, in: Adaptive Optics and Applications III, International Society for Optics and Photonics, 2004, pp. 143-149.
[16] P. Sen, C.-J. Kim, A fast liquid-metal droplet microswitch using EWOD-driven contact-line sliding, Journal of Microelectromechanical Systems, 18(1) (2009) 174-185.
[17] J. Gong, G. Cha, Y.S. Ju, Thermal switches based on coplanar EWOD for satellite thermal control, in: 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, IEEE, 2008, pp. 848-851.
[18] A.K. Ilkhechi, H. Mirzajani, E.N. Aghdam, H.B. Ghavifekr, A new electrostatically actuated rotary three-state DC-contact RF MEMS switch for antenna switch applications, Microsystem Technologies, 23(1) (2017) 231-243.
[19] R. Liu, H. Wang, X. Li, J. Tang, S. Mao, G. Ding, Analysis, simulation and fabrication of MEMS springs for a micro-tensile system, Journal of Micromechanics and Microengineering, 19(1) (2008) 015027.
[20] M. Frasconi, F. Mazzei, T. Ferri, Protein immobilization at gold–thiol surfaces and potential for biosensing, Analytical and bioanalytical chemistry, 398(4) (2010) 1545-1564.
[21] A.H. Schmid, S. Stanca, M. Thakur, K.R. Thampi, C.R. Suri, Site-directed antibody immobilization on gold substrate for surface plasmon resonance sensors, Sensors and Actuators B: Chemical, 113(1) (2006) 297-303.
[22] S. Zhang, N. Wang, Y. Niu, C. Sun, Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor, Sensors and Actuators B: Chemical, 109(2) (2005) 367-374.
[23] S.D. Keighley, P. Li, P. Estrela, P. Migliorato, Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy, Biosensors and Bioelectronics, 23(8) (2008) 1291-1297.
[24] A. Singh, N. Glass, M. Tolba, L. Brovko, M. Griffiths, S. Evoy, Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens, Biosensors and Bioelectronics, 24(12) (2009) 3645-3651.
[25] T. Siepenkoetter, U. Salaj‐Kosla, E. Magner, The immobilization of fructose dehydrogenase on nanoporous gold electrodes for the detection of fructose, ChemElectroChem, 4(4) (2017) 905-912.
[26] C. Nguyen, MEMS Comb-Drive Actuators, Microfabrication Technology, (2010).
[27] R. Legtenberg, A. Groeneveld, M. Elwenspoek, Comb-drive actuators for large displacements, Journal of Micromechanics and microengineering, 6(3) (1996) 320.
[28] B.L. Mackey, Sensor patterns for a capacitive sensing apparatus, in, Google Patents, 2006.
[29] W. Thomson, Theory of vibration with applications, CrC Press, 2018.
[30] J. Rigelsford, Mechanical Microsensors Microtechnology and MEMS Series, Sensor Review, (2002).
[31] N. Lobontiu, Dynamics of microelectromechanical systems, Springer Science & Business Media, 2014.
[32] L. Luschi, F. Pieri, Periodically structured Lamé resonators as high sensitivity resonant mass sensors, Procedia Engineering, 87 (2014) 228-231.