[1] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip, 6(3) (2006) 437-446.
[2] C.-P. Lee, T.-S. Lan, M.-F. Lai, Fabrication of two-dimensional ferrofluid microdroplet lattices in a microfluidic channel, Journal of Applied Physics, 115(17) (2014) 17B5271-5273.
[3] J. Sivasamy, T.-N. Wong, N.-T. Nguyen, L.T.-H. Kao, An investigation on the mechanism of droplet formation in a microfluidic T-junction, Microfluidics and Nanofluidics, 11(1) (2011) 1-10.
[4] S. Bashir, J.M. Rees, W.B. Zimmerman, Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method, International Journal of Multiphase Flow, 60 (2014) 40-49.
[5] S. Takeuchi, P. Garstecki, D.B. Weibel, G.M. Whitesides, An Axisymmetric Flow-Focusing Microfluidic Device, Advanced Materials, 17(8) (2005) 1067-1072.
[6] J. Liu, S.-H. Tan, Y.F. Yap, M.Y. Ng, N.-T. Nguyen, Numerical and experimental investigations of the formation process of ferrofluid droplets, Microfluidics and Nanofluidics, 11(2) (2011) 177-187.
[7] Y. Hong, F. Wang, Flow rate effect on droplet control in a co-flowing microfluidic device, Microfluidics and Nanofluidics, 3(3) (2006) 341-346.
[8] J. Lian, X. Luo, X. Huang, Y. Wang, Z. Xu, X. Ruan, Investigation of microfluidic co-flow effects on step emulsification: Interfacial tension and flow velocities, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568 (2019) 381-390.
[9] Q. Hu, T. Jiang, H. Jiang, Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device, Micromachines (Basel), 11(2:169) (2020) 1-14.
[10] P. Zhu, L. Wang, Passive and active droplet generation with microfluidics: a review, Lab Chip, 17(1) (2016) 34-75.
[11] F. Schönfeld, D. Rensink, Simulation of Droplet Generation by Mixing Nozzles, Chemical Engineering & Technology, 26(5) (2003) 585-591.
[12] L. Tian, M. Gao, L. Gui, A Microfluidic Chip for Liquid Metal Droplet Generation and Sorting, Micromachines, 8(2:39) (2017) 1-12.
[13] H. Babahosseini, T. Misteli, D.L. DeVoe, Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing, Lab Chip, 19(3) (2019) 493-502.
[14] N.R. Beer, K.A. Rose, I.M. Kennedy, Monodisperse droplet generation and rapid trapping for single molecule detection and reaction kinetics measurement, Lab Chip, 9(6) (2009) 841-844.
[15] F. Malloggi, S.A. Vanapalli, H. Gu, D. van den Ende, F. Mugele, Electrowetting-controlled droplet generation in a microfluidic flow-focusing device, Journal of Physics: Condensed Matter, 19(46) (2007) 1-7.
[16] H. Geng, J. Feng, L.M. Stabryla, S.K. Cho, Droplet manipulations by dielectrowetting: Creating, transporting, splitting, and merging, in: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017, pp. 113-116.
[17] M.A. Maleki, M. Soltani, N. Kashaninejad, N.-T. Nguyen, Effects of magnetic nanoparticles on mixing in droplet-based microfluidics, Physics of Fluids, 31:032001(3) (2019) 1-16.
[18] S.M.S. Murshed, S.H. Tan, N.T. Nguyen, T.N. Wong, L. Yobas, Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction, Microfluidics and Nanofluidics, 6(2) (2008) 253-259.
[19] T.H. Ting, Y.F. Yap, N.-T. Nguyen, T.N. Wong, J.C.K. Chai, L. Yobas, Thermally mediated breakup of drops in microchannels, Applied Physics Letters, 89(23: 234101) (2006) 1-3.
[20] Y. Wu, T. Fu, Y. Ma, H.Z. Li, Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device, Soft Matter, 9(41:9792) (2013) 1-7.
[21] C.N. Baroud, M.R. de Saint Vincent, J.P. Delville, An optical toolbox for total control of droplet microfluidics, Lab Chip, 7(8) (2007) 1029-1033.
[22] Y. Huang, Y.L. Wang, T.N. Wong, AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale, Lab Chip, 17(17) (2017) 2969-2981.
[23] M. Esmaeili, K. Sadeghy, MHD Flow of Power-Law Fluids in Locally-Constricted Channels, Nihon Reoroji Gakkaishi, 37(4) (2009) 181-189.
[24] M.J. Ghahderijani, M. Esmaeili, M. Afrand, A. Karimipour, Numerical simulation of MHD fluid flow inside constricted channels using lattice Boltzmann method, Journal of Applied Fluid Mechanics, 10(6) (2017) 1639-1648.
[25] M. Bayareh, An updated review on particle separation in passive microfluidic devices, Chemical Engineering and Processing - Process Intensification, 153 (2020) 107984-107918.
[26] S.-H. Tan, N.-T. Nguyen, L. Yobas, T.G. Kang, Formation and manipulation of ferrofluid droplets at a microfluidicT-junction, Journal of Micromechanics and Microengineering, 20(4:045004) (2010) 1-10.
[27] J. Liu, Y.F. Yap, N.-T. Nguyen, Numerical study of the formation process of ferrofluid droplets, Physics of Fluids, 23(7:072008) (2011) 1-10.
[28] Q. Yan, S. Xuan, X. Ruan, J. Wu, X. Gong, Magnetically controllable generation of ferrofluid droplets, Microfluidics and Nanofluidics, 19(6) (2015) 1377-1384.
[29] V.B. Varma, A. Ray, Z.M. Wang, Z.P. Wang, R.V. Ramanujan, Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields, Sci Rep, 6:37671 (2016) 1-12.
[30] A. Ray, V.B. Varma, P.J. Jayaneel, N.M. Sudharsan, Z.P. Wang, R.V. Ramanujan, On demand manipulation of ferrofluid droplets by magnetic fields, Sensors and Actuators B: Chemical, 242 (2017) 760-768.
[31] A. Sequeira, J. Janela, An Overview of Some Mathematical Models of Blood Rheology, in: M.S. Pereira (Ed.) A Portrait of State-of-the-Art Research at the Technical University of Lisbon, Springer Netherlands, Dordrecht, 2007, pp. 65-87.
[32] E. Chiarello, A. Gupta, G. Mistura, M. Sbragaglia, M. Pierno, Droplet breakup driven by shear thinning solutions in a microfluidic T-junction, Physical Review Fluids, 2(12) (2017) 1-12.
[33] C.D. Xue, Z.P. Sun, Y.J. Li, K.R. Qin, Non-Newtonian Droplet Generation in a Flow-Focusing Microchannel, in: ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer, 2019, pp. 1-7.
[34] L. Derzsi, M. Kasprzyk, J.P. Plog, P. Garstecki, Flow focusing with viscoelastic liquids, Physics of Fluids, 25(9) (2013) 1-18.
[35] A.J.T. Teo, M. Yan, J. Dong, H.-D. Xi, Y. Fu, S.H. Tan, N.-T. Nguyen, Controllable droplet generation at a microfluidic T-junction using AC electric field, Microfluidics and Nanofluidics, 24(3) (2020) 1-9.
[36] A. Khater, O. Abdelrehim, M. Mohammadi, M. Azarmanesh, M. Janmaleki, R. Salahandish, A. Mohamad, A. Sanati-Nezhad, Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches, Lab Chip, 20(12) (2020) 2175-2187.
[37] A. Taassob, M.K.D. Manshadi, A. Bordbar, R. Kamali, Monodisperse non-Newtonian micro-droplet generation in a co-flow device, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(6) (2017) 2013-2021.
[38] V. Amiri Roodan, J. Gomez-Pastora, I.H. Karampelas, C. Gonzalez-Fernandez, E. Bringas, I. Ortiz, J.J. Chalmers, E.P. Furlani, M.T. Swihart, Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study, Soft Matter, 16(41) (2020) 9506-9518.
[39] A. Fluent, Ansys Fluent Theory Guide, ANSYS Inc., USA, (2013).
[40] S. Hund, M. Kameneva, J. Antaki, A Quasi-Mechanistic Mathematical Representation for Blood Viscosity, Fluids, 2(1) (2017) 1-17.