[1] R. Bogue, Exoskeletons and robotic prosthetics: a review of recent developments, Industrial Robot: An International Journal, 36(5) (2009) 421-427.
[2] D. Aaron, H. Hugh, lower extremity exoskeletons and active orthoses: challenges and state-of-the-art, IEEE Transactions on Robotics. 24 (2008) 144-158.
[3] M. Vukobratovic, B. Borovac, D. Surla, D. Stokic, Biped Locomotion, Springer-Verlag, Berlin, (1990) 1-349.
[4] H. Kazerooni, Hybrid Control of the berkeley lower extremity exoskeleton (BLEEX), The International Journal of Robotics, 25(2) (2006) , 561-573.
[5] H. Herr, challenges and state-of-the-art Lower Outhouses extremity exoskeletons and active, Journal of Nero Engineering and Rehabilitation, 21 (2009) 1-9.
[6] T. Yan, M. Cempini, C. M. Oddo, N. Vitiello, Review of assistive strategies in powered lower-limb orthosis and exoskeletons, Robotics and Autonomous Systems, 64(1) (2015) 120-136.
[7] G. Chen, Y. Song, F. Lewis, Distributed Fault-Tolerant Control of Networked Uncertain Euler–Lagrange Systems Under Actuator Faults, IEEE Transactions on Cybernetics, 47(7) (2017), 1706- 1718.
[8] K. Ben-Gharbia, A. Maciejewski, R. Roberts, A Kinematic Analysis and Evaluation of Planar Robots Designed from Optimally Fault-Tolerant Jacobians, IEEE Transactions on Robotics, 30(2) (2014) 516-524.
[9] R. C. Hoover, R. G. Roberts, A. A. Maciejewski, P. S. Naik, K. M. Ben-Gharbia, Designing a Failure-Tolerant Workspace for Kinematically Redundant Robots, IEEE Transactions on Automation Science and Engineering, 12(4) (2015) 1421-1432.
[10] R. Wang and J. Wang, Passive Actuator Fault-Tolerant Control for a Class of Over Actuated Nonlinear Systems and Applications to Electric Vehicles, IEEE Transactions on Vehicular Technology, 62(3) (2013) 972-985.
[11] J. J. Gertler, Survey of model-based failure detection and isolation in complex plants, IEEE Control Systems Magazine, 8(6) (1988) 3–11.
[12] Q. Song, W. J. Hu, L. Yin, Y. C. Soh, Robust adaptive dead zone technology for fault-tolerant control of robot manipulators using neural networks, Journal of Intelligent and Robotic Systems: Theory and Applications, 33(2) (2002) 113–137.
[13] M. D. Anand, T. Selvaraj, S. Kumanan, FAULT DETECTION AND FAULT TOLERANCE METHODS FOR INDUSTRIAL ROBOT MANIPULATORS BASED ON HYBRID INTELLIGENT APPROACH, Advances in Production Engineering & Management, 7(4) (2012) 225-236.
[14] V. Mien, F. Pasquale, C, Darek, Fault diagnosis and fault tolerant control of uncertain robot manipulators using high-order sliding mode. Mathematical Problems in Engineering, (2016)
[15] W. Yu, J. Rosen, Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton, IEEE Transactions on Cybernetics, 43(2) (2013) 673-684.
[16] M. Wang, A. Yang, Dynamic Learning from Adaptive Neural Control of Robot Manipulators with Prescribed Performance, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(99) (2017) 1-12.
[17] F.Lin, R. D. Brandt, An optimal control approach to robust control of robot manipulators, IEEE Transactions on Robotics and Automation,14(1) (1998) 69-77.
[18] M. Jin, S. H. Kang, P. H. Chang, J. Lee, Robust Control of Robot Manipulators Using Inclusive and Enhanced Time Delay Control, IEEE/ASME Transactions on Mechatronics , 22(5)(2017) 2141-2152.
[19] C. Edwards, E. F. Colet, L. Fridman, Advances in variable structure and sliding mode control, Springer, Berlin, (2006) 50-280.
[20] M. Van, M. Mavrovouniotis, S.S. Ge, An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 49(7) (2019) 1448-1458.
[21] G. Chen, Y. Song; Y. Guan, Terminal Sliding Mode-Based Consensus Tracking Control for Networked Uncertain Mechanical Systems on Digraphs, IEEE Transactions on Neural Networks and Learning Systems,29(3) (2016)749-756.
[22] T. Madani, B. Daachi, K. Djouani, Modular-Controller-Design Based Fast Terminal Sliding Mode for Articulated Exoskeleton Systems, IEEE Transactions on Control Systems Technology, 25(3) (2017) 1133-1140.
[23] S. Xu, C. Chen, Z. Wu, Study of nonsingular fast terminal sliding mode fault-tolerant control, The IEEE Transactions on Industrial Electronics, 62(6) (2015) 3906-3913.
[24] M. Van, S. S. Ge and H. Ren, Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding Mode Control, IEEE Transactions on Cybernetics, 47(7) (2017) 1681-1693.
[25] A. Pati, S. Singh, R. Negi, sliding mode controller design using PID sliding surface for half car suspension system, students conference on engineering and systems (SCES), India, 2014.
[26] M. Rahmani, H. Komijani, A. Ghanbari, M. M. Ettefagh, Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm, Micro system Technologies, 24 (6) (2018) 2835-2846.
[27] G. P. Incremona, M. Rubagotti, A. Ferrara, Sliding Mode Control of Constrained Nonlinear Systems, IEEE Transactions on Automatic Control, 62(6) (2017) 2965-2972.
[28] F. Zargham, A. H. Mazinan, Super-twisting sliding mode control approach with its application to wind turbine systems, Springer, 11(1) (2018) 1-19.
[29] A. Goel, A. Swarup, MIMO Uncertain Nonlinear System Control via Adaptive High-Order Super Twisting Sliding Mode and its Application to Robotic Manipulator, Journal of Control Automation and Electrical System, 28(2017) 36–49.
[30] J. A. Farell, M. Polycarpou, M. Sharma, W. Dong, Command Filtered Backstepping, Automatic Control, IEEE Transaction on 54(6)(2009) 1391-1395.
[31] M. Liu, S. Xu, C. Han, Backstepping Adaptive Attitude Tracking Control of Flexible Spacecraft, IEEE, Electrical and Control Engineering (ICECE), (2011) 2034- 2037.
[32] N. M. Dehkordi, N. Sadati, M. Hamzeh, A Robust Backstepping High-Order Sliding Mode Control Strategy for Grid-Connected DG Units with Harmonic/Interharmonic Current Compensation Capability, IEEE Transactions on Sustainable Energy, 8(2) (2017) 561-572.
[33] L. M. Capisani, A. Ferrara, A. Ferreira, L. M. Fridman, Manipulator fault diagnosis via higher order sliding mode observers, IEEE Transactions on Industrial Electronics, 59 (10) (2012) 3979–3986.
[34] P. Pa, J. Jou, Design of a bipedal toy robot with an automatic center of gravity shifting mechanism, Advanced Material Research, 120(2010) 670-674.
[35] D. Messuri, C. Klein, Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. Robotics and Automation, IEEE, 1(3) (1985) 141-132.
[36] S. A. A. Moosavian, K. Alipour, Y. Bahramzadeh. Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. In intelligent robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference, USA, 2007.
[37] A. Takhmar, MHS measure for postural stability monitoring and control of biped robots. In Advanced intelligent Mechatronics, 2008. AIM 2008. IEEE/ASME lnternational Conference on, China, 2008.
[38] C. Monje, S. Martinez, P. Pierro, C. Balaguer, Whole-Body Balance Control of a Humanoid Robot in Real Time Based on ZMP Stability Regions Approach, Cybernetics and Systems. 49(8) (2018) 521-537.
[40] H. Kawamoto, Y. Sankai, Power assist method based on phase sequence and muscle force condition for HAL, Advanced Robotics. 19(2005) 717-734.
[41] J. Craig, Introduction to Robotics: Mechanics and Control, Hall, London, (2017) 85-310
[42] M. Van, H. Kang, Y. Suh, K. Shin, Output feedback tracking control of uncertain robot manipulators via higher order sliding-mode observer and fuzzy compensator, Journal of Mechanical Science and Technology, 27(8) (2013) 2487– 2496.