Active fault tolerant control based on adaptive back-stepping nonsingular fast integral terminal sliding mode approach

Document Type : Research Article

Authors

1 School of Mechanical engineering, ShahidBeheshti University, Tehran, Iran

2 shahid beheshti university

3 School of Mechanical Engineering, ShahidBeheshtiUniversity, Tehran, Iran.

Abstract

In this paper, finite-time active fault tolerant control based on adaptive back-stepping nonsingular fast integral terminal sliding mode control is proposed to control a lower limb exoskeleton in the presence of actuator fault. In order to detect, isolate and accommodate the actuator fault, a third-order super twisting sliding mode observer is used. To eliminate the chattering of conventional sliding mode, supper twisting sliding mode algorithm is applied, which leads to finite-time convergence and high precision in tracking the desired trajectories. Back-stepping term guarantees global stability based on Lyapunov theory. Upper limb motion is used to provide stability to robot's motion based on zero-moment point criterion. In order to attain maximum stability based on zero-moment point, minimize error in tracking the desired trajectories, increase the tolerance of the controller against actuator fault, controller, observer and upper limb trajectory parameters are optimally tuned based on harmony search algorithm. Performance of the proposed controller is compared with the performance of sliding mode controller with/without fault information. Simulation results reveal the effectiveness of the proposed controller in the presence of actuator fault, uncertainty and disturbance in comparison with sliding mode controller.

Keywords

Main Subjects


[1]      R. Bogue, Exoskeletons and robotic prosthetics: a review of recent developments, Industrial Robot: An International Journal, 36(5) (2009) 421-427.
[2]      D. Aaron, H. Hugh, lower extremity exoskeletons and active orthoses: challenges and state-of-the-art, IEEE Transactions on Robotics. 24 (2008) 144-158.
[3]      M. Vukobratovic, B. Borovac, D. Surla, D. Stokic, Biped Locomotion, Springer-Verlag,  Berlin, (1990) 1-349.
[4]      H. Kazerooni, Hybrid Control of the berkeley lower extremity exoskeleton (BLEEX), The International Journal of Robotics, 25(2) (2006) , 561-573.
[5]      H. Herr, challenges and state-of-the-art Lower Outhouses extremity exoskeletons and active, Journal of Nero Engineering and Rehabilitation, 21 (2009) 1-9.
[6]      T. Yan, M. Cempini, C. M. Oddo, N. Vitiello, Review of assistive strategies in powered lower-limb orthosis and exoskeletons, Robotics and Autonomous Systems, 64(1) (2015) 120-136.
[7]      G. Chen, Y. Song, F. Lewis, Distributed Fault-Tolerant Control of Networked Uncertain Euler–Lagrange Systems Under Actuator Faults, IEEE Transactions on Cybernetics, 47(7) (2017), 1706- 1718.
[8]      K. Ben-Gharbia, A. Maciejewski, R. Roberts, A Kinematic Analysis and Evaluation of Planar Robots Designed from Optimally Fault-Tolerant Jacobians, IEEE Transactions on Robotics, 30(2) (2014) 516-524.
[9]      R. C. Hoover, R. G. Roberts, A. A. Maciejewski, P. S. Naik, K. M. Ben-Gharbia, Designing a Failure-Tolerant Workspace for Kinematically Redundant Robots, IEEE Transactions on Automation Science and Engineering, 12(4) (2015) 1421-1432.
[10]   R. Wang and J. Wang, Passive Actuator Fault-Tolerant Control for a Class of Over Actuated Nonlinear Systems and Applications to Electric Vehicles, IEEE Transactions on Vehicular Technology, 62(3) (2013) 972-985.
[11]   J. J. Gertler, Survey of model-based failure detection and isolation in complex plants, IEEE Control Systems Magazine, 8(6) (1988) 3–11.
[12]   Q. Song, W. J. Hu, L. Yin, Y. C. Soh, Robust adaptive dead zone technology for fault-tolerant control of robot manipulators using neural networks, Journal of Intelligent and Robotic Systems: Theory and Applications, 33(2) (2002) 113–137.
[13]   M. D. Anand, T. Selvaraj, S. Kumanan, FAULT DETECTION AND FAULT TOLERANCE METHODS FOR INDUSTRIAL ROBOT MANIPULATORS BASED ON HYBRID INTELLIGENT APPROACH, Advances in Production Engineering & Management, 7(4) (2012) 225-236.
[14]   V. Mien, F. Pasquale, C, Darek, Fault diagnosis and fault tolerant control of uncertain robot manipulators using high-order sliding mode. Mathematical Problems in Engineering, (2016)
[15]   W. Yu, J. Rosen, Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton, IEEE Transactions on Cybernetics, 43(2) (2013) 673-684.
[16]   M. Wang, A. Yang, Dynamic Learning from Adaptive Neural Control of Robot Manipulators with Prescribed Performance, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(99) (2017) 1-12.
[17]   F.Lin, R. D. Brandt, An optimal control approach to robust control of robot manipulators, IEEE Transactions on Robotics and Automation,14(1) (1998) 69-77.
[18]   M. Jin, S. H. Kang, P. H. Chang, J. Lee, Robust Control of Robot Manipulators Using Inclusive and Enhanced Time Delay Control, IEEE/ASME Transactions on Mechatronics , 22(5)(2017) 2141-2152.
[19]   C. Edwards, E. F. Colet, L. Fridman, Advances in variable structure and sliding mode control, Springer, Berlin, (2006) 50-280.
[20]   M. Van, M. Mavrovouniotis, S.S. Ge, An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 49(7) (2019) 1448-1458.
[21]   G. Chen, Y. Song; Y. Guan, Terminal Sliding Mode-Based Consensus Tracking Control for Networked Uncertain Mechanical Systems on Digraphs, IEEE Transactions on Neural Networks and Learning Systems,29(3) (2016)749-756.
[22]   T. Madani, B. Daachi, K. Djouani, Modular-Controller-Design Based Fast Terminal Sliding Mode for Articulated Exoskeleton Systems, IEEE Transactions on Control Systems Technology, 25(3) (2017) 1133-1140.
[23]   S. Xu, C. Chen, Z. Wu, Study of nonsingular fast terminal sliding mode fault-tolerant control, The IEEE Transactions on Industrial Electronics, 62(6) (2015) 3906-3913.
[24]    M. Van, S. S. Ge and H. Ren, Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding Mode Control, IEEE Transactions on Cybernetics, 47(7) (2017) 1681-1693.
[25]   A. Pati, S. Singh, R. Negi, sliding mode controller design using PID sliding surface for half car suspension system, students conference on engineering and systems (SCES), India, 2014.
[26]   M. Rahmani, H. Komijani, A. Ghanbari, M. M.  Ettefagh, Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm, Micro system Technologies, 24 (6) (2018) 2835-2846.
[27]   G. P. Incremona, M. Rubagotti, A. Ferrara, Sliding Mode Control of Constrained Nonlinear Systems, IEEE Transactions on Automatic Control, 62(6) (2017) 2965-2972.
[28]   F. Zargham, A. H. Mazinan, Super-twisting sliding mode control approach with its application to wind turbine systems, Springer, 11(1) (2018) 1-19.
[29]   A. Goel, A. Swarup, MIMO Uncertain Nonlinear System Control via Adaptive High-Order Super Twisting Sliding Mode and its Application to Robotic Manipulator, Journal of Control Automation and Electrical System, 28(2017) 36–49.
[30]   J. A. Farell, M. Polycarpou, M. Sharma, W. Dong, Command Filtered Backstepping, Automatic Control, IEEE Transaction on 54(6)(2009) 1391-1395.
[31]   M. Liu, S. Xu, C. Han, Backstepping Adaptive Attitude Tracking Control of Flexible Spacecraft, IEEE, Electrical and Control Engineering (ICECE), (2011) 2034- 2037.
[32]   N. M. Dehkordi, N. Sadati, M. Hamzeh, A Robust Backstepping High-Order Sliding Mode Control Strategy for Grid-Connected DG Units with Harmonic/Interharmonic Current Compensation Capability, IEEE Transactions on Sustainable Energy, 8(2) (2017) 561-572.
[33]   L. M. Capisani, A. Ferrara, A. Ferreira, L. M. Fridman, Manipulator fault diagnosis via higher order sliding mode observers, IEEE Transactions on Industrial Electronics, 59 (10) (2012) 3979–3986.
[34]   P. Pa, J. Jou, Design of a bipedal toy robot with an automatic center of gravity shifting mechanism, Advanced Material Research, 120(2010) 670-674.
[35]   D. Messuri, C. Klein, Automatic  body  regulation  for  maintaining  stability of  a legged  vehicle   during   rough-terrain  locomotion. Robotics and Automation, IEEE, 1(3) (1985) 141-132.
[36]   S. A. A. Moosavian, K. Alipour, Y. Bahramzadeh.   Dynamics   modeling and tip-over stability   of suspended wheeled mobile robots with multiple arms.  In intelligent   robots and Systems, 2007. IROS  2007. IEEE/RSJ International Conference, USA, 2007.
[37]   A. Takhmar, MHS measure  for   postural  stability  monitoring  and   control   of   biped robots.  In Advanced   intelligent   Mechatronics, 2008. AIM 2008. IEEE/ASME lnternational Conference on, China, 2008.
[38]   C. Monje, S. Martinez, P. Pierro, C. Balaguer, Whole-Body Balance Control of a Humanoid Robot in Real Time Based on ZMP Stability Regions Approach, Cybernetics and Systems. 49(8) (2018) 521-537.
[39]   J. Kim, Harmony search algorithm: A algorithm, Procedia Engineering. 154(2016) 1401-1405.
[40]   H. Kawamoto, Y. Sankai, Power assist method based on phase sequence and muscle force condition for HAL, Advanced Robotics. 19(2005) 717-734.
[41]   J. Craig, Introduction to Robotics: Mechanics and Control, Hall, London, (2017) 85-310
[42]   M. Van, H. Kang, Y. Suh, K. Shin, Output feedback tracking control of uncertain robot manipulators via higher order sliding-mode observer and fuzzy compensator, Journal of Mechanical Science and Technology, 27(8) (2013) 2487– 2496.