[1] I. Sari, T. Balkan, H. Kulah, An electromagnetic micro power generator for wideband environmental vibrations, Sensors and Actuators A: Physical, 145-146 (2008) 405-413.
[2] P. Glynne-Jones, M.J. Tudor, S.P. Beeby, N.M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, 110(1) (2004) 344-349.
[3] S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17(12) (2006) R175-R195.
[4] A. Kansal, M. B. Srivastava, Distributed Energy Harvesting for Energy Neutral Sensor Networks, UCLA: Center for Embedded Network Sensing, (2005) https://escholarship.org/uc/item/96j1w5jc.
[5] D. Zhu, S. Roberts, M.J. Tudor, S.P. Beeby, Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator, Sensors and Actuators A: Physical, 158(2) (2010) 284-293.
[6] M. El-hami, P. Glynne-Jones, N.M. White, M. Hill, S. Beeby, E. James, A.D. Brown, J.N. Ross, Design and fabrication of a new vibration-based electromechanical power generator, Sensors and Actuators A: Physical, 92(1) (2001) 335-342.
[7] A. Munaz, B.-C. Lee, G.-S. Chung, A study of an electromagnetic energy harvester using multi-pole magnet, Sensors and Actuators A: Physical, 201 (2013) 134-140.
[8] D.W. Oh, D.Y. Sohn, D.G. Byun, Y.S. Kim, Analysis of electromotive force characteristics and device implementation for ferrofluid based energy harvesting system, in: 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 2014, pp. 2033-2038.
[9] C. Sravanthi, J.M. Conrad, A survey of energy harvesting sources for embedded systems, in: IEEE SoutheastCon 2008, 2008, pp. 442-447.
[10] M.P. Soares dos Santos, J.A.F. Ferreira, J.A.O. Simões, R. Pascoal, J. Torrão, X. Xue, E.P. Furlani, Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction, Scientific Reports, 6(1) (2016) 18579.
[11] Z. Li, Z. Yan, J. Luo, Z. Yang, Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration, Energy Conversion and Management, 179 (2019) 132-140.
[12] M.A. Halim, H. Cho, M. Salauddin, J.Y. Park, A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion, Sensors and Actuators A: Physical, 249 (2016) 23-31.
[13] R.M. Toyabur, M. Salauddin, H. Cho, J.Y. Park, A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations, Energy Conversion and Management, 168 (2018) 454-466.
[14] X. Liu, J. Qiu, H. Chen, X. Xu, Y. Wen, P. Li, Design and Optimization of an Electromagnetic Vibration Energy Harvester Using Dual Halbach Arrays, IEEE Transactions on Magnetics, 51(11) (2015) 1-4.
[15] J.G. Monroe, O.T. Ibrahim, S.M. Thompson, N. Shamsaei, Energy harvesting via fluidic agitation of a magnet within an oscillating heat pipe, Applied Thermal Engineering, 129 (2018) 884-892.
[16] J.L. Neuringer, R.E. Rosensweig, Ferrohydrodynamics, The Physics of Fluids, 7(12) (1964) 1927-1937.
[17] A. Bibo, R. Masana, A. King, G. Li, M.F. Daqaq, Electromagnetic ferrofluid-based energy harvester, Physics Letters A, 376(32) (2012) 2163-2166.
[18] S. Alazmi, Y. Xu, M.F. Daqaq, Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: Analytical modeling and experimental validation, Physics of Fluids, 28(7) (2016) 077101.
[19] Q. Liu, S.F. Alazemi, M.F. Daqaq, G. Li, A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation, Journal of Magnetism and Magnetic Materials, 449 (2018) 105-118.
[20] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39(1) (1981) 201-225.
[21] P.-j. Ming, W.-y. Duan, Numerical Simulation of Sloshing in Rectangular Tank with VOF Based on Unstructured Grids, Journal of Hydrodynamics, 22(6) (2010) 856-864.