[1] S.M. Kurtz, The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement, Elsevier, 2004.
[2] H. Stein, Engineered Materials Handbook, Ultra High Molecular Weight Polyethylene (UHMWPE), 1999.
[3] X. Dangsheng, Friction and wear properties of UHMWPE composites reinforced with carbon fiber, Materials letters, 59(2-3) (2005) 175-179.
[4] Y.-S. Zoo, J.-W. An, D.-P. Lim, D.-S. Lim, Effect of carbon nanotube addition on tribological behavior of UHMWPE, Tribology Letters, 16(4) (2004) 305-309.
[5] K. Plumlee, C.J. Schwartz, Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles, Wear, 267(5-8) (2009) 710-717.
[6] B.-P. Chang, H.M. Akil, R.B.M. Nasir, Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear, Wear, 297(1-2) (2013) 1120-1127.
[7] D. Xiong, J. Lin, D. Fan, Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy, Biomedical Materials, 1(3) (2006) 175.
[8] E.A. Aksoy, B. Akata, N. Bac, N. Hasirci, Preparation and characterization of zeolite beta–polyurethane composite membranes, Journal of applied polymer science, 104(5) (2007) 3378-3387.
[9] J.Y. Lee, M.J. Shim, S.W. Kim, Effect of natural zeolite on the mechanical properties of epoxy matrix, Polymer Engineering & Science, 39(10) (1999) 1993-1997.
[10] Z. Lv, K. Wang, Z. Qiao, W. Wang, The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene, Materials & design, 31(8) (2010) 3804-3809.
[11] B.P. Chang, H.M. Akil, R.M. Nasir, Mechanical and tribological properties of Zeolite-reinforced UHMWPE composite for implant application, Procedia Engineering, 68 (2013) 88-94.
[12] G. Chow, R.S. Bedi, Y. Yan, J. Wang, Zeolite as a wear-resistant coating, Microporous and Mesoporous Materials, 151 (2012) 346-351.
[13] R. Mohsenzadeh, H. Majidi, M. Soltanzadeh, K. Shelesh-Nezhad, Wear and failure of polyoxymethylene/calcium carbonate nanocomposite gears, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234(6) (2019) 811-820.
[14] R. mohsenzadeh, K. Shelesh-Nezhad, Experimental studies on the durability of PA6-PP-CaCO3 nanocomposite gears, Journal of Science and Technology of Composites, 3(2) (2016) 147-156.
[15] S. Sahebian, S. Zebarjad, S. Sajjadi, The effect of temperature and nano-sized calcium carbonate on tensile properties of medium density polyethylene; Asare dama va nanozarat karbonat kalsium bar khavase kesheshi polietilene ba chegali-e motavaset, Polymer Science and Technology, 21(2) (2008) 133-140.
[16] S. Bhattacharya, M. Kamal, R. Gupta, Polymeric nanocomposites: theory and practice., 2008.
[17] X. Kong, S. Chakravarthula, Y. Qiao, Evolution of collective damage in a polyamide 6–silicate nanocomposite, International Journal of Solids and Structures, 43(20) (2006) 5969-5980.
[18] M.M. Haque, M. Hasan, TiO2 and zeolite nanopowder enhanced mechanical properties of hybrid polymer composites, Journal of Thermoplastic Composite Materials, 34(3) (2021) 382-395.
[19] R. Soenoko, A. Suprapto, Y.S. Irawan, Impact fracture toughness evaluation by essential work of fracture method in high density polyethylene filled with zeolite, FME Transactions, 44(2) (2016) 180-186.
[20] E. Ghobadi, M. Hemmati, G. Khanbabaei, M. Shojaei, M. Asghari, Effect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films, International Journal of Nano Dimension, 6(2) (2015) 177-181.
[21] B.L. Lee, L.E. Nielsen, Temperature dependence of the dynamic mechanical properties of filled polymers, Journal of Polymer Science: Polymer Physics Edition, 15(4) (1977) 683-692.
[22] C.-M. Chan, J. Wu, J.-X. Li, Y.-K. Cheung, Polypropylene/calcium carbonate nanocomposites, polymer, 43(10) (2002) 2981-2992.
[23] A. Kiss, E. Fekete, B. Pukánszky, Aggregation of CaCO3 particles in PP composites: Effect of surface coating, Composites science and technology, 67(7-8) (2007) 1574-1583.
[24] A. Egorenkov, Effect of crystallization on the frictional properties of polymers, Polymer Mechanics, 14(6) (1978) 800-803.
[25] A. Cotet, M. Bastiurea, G. Andrei, A. Cantaragiu, A. Hadar, Dry Sliding Friction Analysis and Wear Behavior of Carbon Nanotubes/Vinylester Nanocomposites, Using Pin-on-Disc Test, REVISTA DE CHIMIE, 70(10) (2019) 3592-3596.
[26] T. Xu, N. Liao, Y. Xu, M. Nath, Y. Li, Y. Chen, S. Sang, In situ detoxification and mechanical properties of Al2O3-Cr2O3-CaO castables with zeolite, Journal of the European Ceramic Society, 41(1) (2021) 978-985.
[27] X. Wang, X. Niu, X. Wang, X. Qiu, L. Wang, Effects of filler distribution and interface thermal resistance on the thermal conductivity of composites filling with complex shaped fillers, International Journal of Thermal Sciences, 160 (2021) 106678.
[28] W.A. Lee Sanchez, C.-Y. Huang, J.-X. Chen, Y.-C. Soong, Y.-N. Chan, K.-C. Chiou, T.-M. Lee, C.-C. Cheng, C.-W. Chiu, Enhanced Thermal Conductivity of Epoxy Composites Filled with Al2O3/Boron Nitride Hybrids for Underfill Encapsulation Materials, Polymers, 13(1) (2021) 147.
[29] U. Uyor, A. Popoola, O. Popoola, V. Aigbodion, Effects of titania on tribological and thermal properties of polymer/graphene nanocomposites, Journal of Thermoplastic Composite Materials, 33(8) (2020) 1030-1047.
[30] S.-C. Shi, X.-N. Tsai, S.-S. Pek, Tribological behavior and energy dissipation of hybrid nanoparticle-reinforced HPMC composites during sliding wear, Surface and Coatings Technology, 389(15) (2020) 125617.
[31] M. Zhang, X. Wang, X. Fu, Y. Xia, Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin, Tribology International, 42(7) (2009) 1029-1039.
[32] M.A. Ashraf, W. Peng, Y. Zare, K.Y. Rhee, Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites, Nanoscale research letters, 13(1) (2018) 214.
[33] Y. Zare, Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties, Composites Part A: Applied Science and Manufacturing, 84 (2016) 158-164.
[34] N. Sapiai, A. Jumahat, M. Jawaid, C. Santulli, Abrasive Wear Behavior of CNT-Filled Unidirectional Kenaf–Epoxy Composites, Processes, 9(1) (2021) 128.
[35] L. Chang, Z. Zhang, L. Ye, K. Friedrich, Tribological properties of high temperature resistant polymer composites with fine particles, Tribology international, 40(7) (2007) 1170-1178.
[36] L. Chang, Z. Zhang, H. Zhang, A. Schlarb, On the sliding wear of nanoparticle filled polyamide 66 composites, Composites Science and Technology, 66(16) (2006) 3188-3198.
[37] L. Chang, Z. Zhang, Tribological properties of epoxy nanocomposites: Part II. A combinative effect of short carbon fibre with nano-TiO2, Wear, 260(7-8) (2006) 869-878.