Modeling of vibro-acoustic modulation induced by non-linear contact in the Euler-Bernoulli beam using the Fourier spectral element

Document Type : Research Article

Authors

1 صنعتی شاهرود-مهندسی مکانیک

2 New Technologies Research Center (NTRC), Amirkabir University of Technology

3 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran

Abstract

Exploiting the nonlinear nature of structural damage through piezoelectric patches is one of the latest concepts of early detection of damage. Support loosening as one of the prevalent defects in engineering systems is a source of contact acoustic nonlinearity. Vibro-acoustic modulation has proven to be a promising method for revealing structural nonlinearity characteristics. Requiring a large number of cycles to be solved in the time domain to reach the steady-state before evaluating the results in the frequency domain, makes using existing computational methods such as finite element method to model this phenomenon very expensive. This paper is concerned with a novel numerical method called Fourier spectral element to investigate the vibro-acoustic modulation in the Euler-Bernoulli beam caused by contact nonlinearity. Three piezoelectrics were attached to the beam as the probe, pump and sensor. The numerical outcomes are compared against the experimental results to check the validity of the developed method. The results show that the Fourier spectral element not only provides a high convergence rate but is also capable of simulating the phenomenon of modulation with sufficient accuracy.

Keywords

Main Subjects


[1] J. Jang, P. Liu, B. Kim, S.-w. Kim, H. Sohn, Silicon wafer crack detection using nonlinear ultrasonic modulation induced by high repetition rate pulse laser, Optics and Lasers in Engineering, 129 (2020) 106074-106082.
[2] S. Kim, D.E. Adams, H. Sohn, G. Rodriguez-Rivera, N. Myrent, R. Bond, J. Vitek, S. Carr, A. Grama, J.J. Meyer, Crack detection technique for operating wind turbine blades using Vibro-Acoustic Modulation, Structural Health Monitoring, 13(6) (2014) 660-670.
[3] N. Sepehry, S. Asadi, M. Shamshirsaz, F. Bakhtiari Nejad, A new model order reduction method based on global kernel k‐means clustering: Application in health monitoring of plate using Lamb wave propagation and impedance method, Structural Control and Health Monitoring, 25(9) (2018) e2211.
[4] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, W. Zhu, Nonlinear modeling of cracked beams for impedance based structural health monitoring, in:  ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Florida, USA, 2017, V04BT05A034.
[5] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates, Journal of Intelligent Material Systems and Structures, 28(18) (2017) 2473-2488.
[6] L. Pieczonka, A. Klepka, A. Martowicz, W.J. Staszewski, Nonlinear vibroacoustic wave modulations for structural damage detection: an overview, Optical Engineering, 55(1) (2015) 011005.
[7] T. Stepinski, T. Uhl, W. Staszewski, Advanced structural damage detection: from theory to engineering applications, John Wiley & Sons, 2013.
[8] I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids, Ultrasonics, 40(1-8) (2002) 621-625.
[9] P.J. Westervelt, Scattering of sound by sound, The Journal of the Acoustical Society of America, 29(2) (1957) 199-203.
[10] U. Ingard, D.C. Pridmore‐Brown, Scattering of sound by sound, The Journal of the Acoustical Society of America, 28(3) (1956) 367-369.
[11] H. Sohn, H.J. Lim, M.P. DeSimio, K. Brown, M. Derriso, Nonlinear ultrasonic wave modulation for online fatigue crack detection, Journal of Sound and Vibration, 333(5) (2014) 1473-1484.
[12] D.M. Donskoy, A.M. Sutin, Vibro-acoustic modulation nondestructive evaluation technique, Journal of intelligent material systems and structures, 9(9) (1998) 765-771.
[13] I.N. Didenkulov, Interaction of sound and vibrations in concrete with cracks, in:  AIP Conference Proceedings, AIP,  524 ,  (2000) 279-282 .
[14] A. Klepka, W.J. Staszewski, R. Jenal, M. Szwedo, J. Iwaniec, T. Uhl, Nonlinear acoustics for fatigue crack detection–experimental investigations of vibro-acoustic wave modulations, Structural Health Monitoring, 11(2) (2012) 197-211.
[15] E. Ballad, S.Y. Vezirov, K. Pfleiderer, I.Y. Solodov, G. Busse, Nonlinear modulation technique for NDE with air-coupled ultrasound, Ultrasonics, 42(1-9) (2004) 1031-1036.
[16] H.J. Lim, Y. Kim, G. Koo, S. Yang, H. Sohn, I.-h. Bae, J.-H. Jang, Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition, Smart Materials and Structures, 25(9) (2016) 095055.
[17] P.P. Delsanto, Universality of nonclassical nonlinearity, Springer, 2006.
[18] R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: the complex behaviour of rocks, soil, concrete, John Wiley & Sons, 2009.
[19] D. Donskoy, A. Sutin, A. Ekimov, Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing, Ndt & E International, 34(4) (2001) 231-238.
[20] M. Ryles, F. Ngau, I. McDonald, W. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures, Fatigue & Fracture of Engineering Materials & Structures, 31(8) (2008) 674-683.
[21] D. Broda, W. Staszewski, A. Martowicz, T. Uhl, V. Silberschmidt, Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—A review, Journal of Sound and Vibration, 333(4) (2014) 1097-1118.
[22] A. Martowicz, W.J. Staszewski, M. Ruzzene, T. Uhl, Vibro-acoustic wave interaction in cracked plate modeled with peridynamics, A Proceedings of the WCCM XI, ECCM V, ECFD VI, Onate E., Oliver X., Huerta (eds.), International Center for Numerical Methods in Engineering, Barcelona, Spain,  (2014) 4021-4027.
[23] A. Martowicz, P. Packo, W.J. Staszewski, T. Uhl, Modelling of nonlinear vibro-acoustic wave interaction in cracked aluminium plates using local interaction simulation approach, in:  6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, 2012.
[24] A. Martowicz, M. Ruzzene, W.J. Staszewski, T. Uhl, Non-local modeling and simulation of wave propagation and crack growth, in:  AIP Conference Proceedings, American Institute of Physics, 2014, 513-520.
[25] N. Sepehry, M. Ehsani, M. Shamshirsaz, M. Sadighi, Contact acoustic nonlinearity identification via online vibro-acoustic modulation technique, Modares Mechanical Engineering,   20(7) (2020) 1719-1730.
[26] S.E. Lee, S. Jin, J.-W. Hong, Microcrack modeling and simulation for nonlinear wave modulation, in:  Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, International Society for Optics and Photonics, 2016, 98033J.
[27] A.K. Singh, B.-Y. Chen, V.B. Tan, T.-E. Tay, H.-P. Lee, Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites, Ultrasonics, 74 (2017) 89-98.
[28] X. Zhang, The fourier spectral element method for vibration analysis of general dynamic structures, Wayne State University Dissertations (2011).
 [29] Z. Su, G. Jin, Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method, The Journal of the Acoustical Society of America, 140(5) (2016) 3925-3940.
[30] S. Stoykov, G. Litak, E. Manoach, Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer, The European Physical Journal Special Topics, 224(14) (2015) 2755-2770.
[31] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, Thermo-Electro Mechanical Impedance based Structural Health Monitoring: Euler-Bernoulli Beam Modeling, AUT Journal of Modeling and Simulation, 49(2) (2017) 143-152.
[32] S.S. Rao, Vibration of continuous systems, Wiley Online Library, 2007.
[33] N. Sepehry, M. Shamshirsaz, A. Bastani, Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature, Structural Health Monitoring, 10(6) (2011) 573-585.
[34] A. Konyukhov, R. Izi, Introduction to computational contact mechanics: a geometrical approach, John Wiley & Sons, 2015.
[35] N. Sepehry, M. Ehsani, W. Zhu, F. Bakhtiari-Nejad, Application of scaled boundary finite element method for vibration-based structural health monitoring of breathing cracks, Journal of Vibration and Control,  (2020) 1077546320968646.