[1] J. Jang, P. Liu, B. Kim, S.-w. Kim, H. Sohn, Silicon wafer crack detection using nonlinear ultrasonic modulation induced by high repetition rate pulse laser, Optics and Lasers in Engineering, 129 (2020) 106074-106082.
[2] S. Kim, D.E. Adams, H. Sohn, G. Rodriguez-Rivera, N. Myrent, R. Bond, J. Vitek, S. Carr, A. Grama, J.J. Meyer, Crack detection technique for operating wind turbine blades using Vibro-Acoustic Modulation, Structural Health Monitoring, 13(6) (2014) 660-670.
[3] N. Sepehry, S. Asadi, M. Shamshirsaz, F. Bakhtiari Nejad, A new model order reduction method based on global kernel k‐means clustering: Application in health monitoring of plate using Lamb wave propagation and impedance method, Structural Control and Health Monitoring, 25(9) (2018) e2211.
[4] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, W. Zhu, Nonlinear modeling of cracked beams for impedance based structural health monitoring, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Florida, USA, 2017, V04BT05A034.
[5] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates, Journal of Intelligent Material Systems and Structures, 28(18) (2017) 2473-2488.
[6] L. Pieczonka, A. Klepka, A. Martowicz, W.J. Staszewski, Nonlinear vibroacoustic wave modulations for structural damage detection: an overview, Optical Engineering, 55(1) (2015) 011005.
[7] T. Stepinski, T. Uhl, W. Staszewski, Advanced structural damage detection: from theory to engineering applications, John Wiley & Sons, 2013.
[8] I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids, Ultrasonics, 40(1-8) (2002) 621-625.
[9] P.J. Westervelt, Scattering of sound by sound, The Journal of the Acoustical Society of America, 29(2) (1957) 199-203.
[10] U. Ingard, D.C. Pridmore‐Brown, Scattering of sound by sound, The Journal of the Acoustical Society of America, 28(3) (1956) 367-369.
[11] H. Sohn, H.J. Lim, M.P. DeSimio, K. Brown, M. Derriso, Nonlinear ultrasonic wave modulation for online fatigue crack detection, Journal of Sound and Vibration, 333(5) (2014) 1473-1484.
[12] D.M. Donskoy, A.M. Sutin, Vibro-acoustic modulation nondestructive evaluation technique, Journal of intelligent material systems and structures, 9(9) (1998) 765-771.
[13] I.N. Didenkulov, Interaction of sound and vibrations in concrete with cracks, in: AIP Conference Proceedings, AIP, 524 , (2000) 279-282 .
[14] A. Klepka, W.J. Staszewski, R. Jenal, M. Szwedo, J. Iwaniec, T. Uhl, Nonlinear acoustics for fatigue crack detection–experimental investigations of vibro-acoustic wave modulations, Structural Health Monitoring, 11(2) (2012) 197-211.
[15] E. Ballad, S.Y. Vezirov, K. Pfleiderer, I.Y. Solodov, G. Busse, Nonlinear modulation technique for NDE with air-coupled ultrasound, Ultrasonics, 42(1-9) (2004) 1031-1036.
[16] H.J. Lim, Y. Kim, G. Koo, S. Yang, H. Sohn, I.-h. Bae, J.-H. Jang, Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition, Smart Materials and Structures, 25(9) (2016) 095055.
[17] P.P. Delsanto, Universality of nonclassical nonlinearity, Springer, 2006.
[18] R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: the complex behaviour of rocks, soil, concrete, John Wiley & Sons, 2009.
[19] D. Donskoy, A. Sutin, A. Ekimov, Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing, Ndt & E International, 34(4) (2001) 231-238.
[20] M. Ryles, F. Ngau, I. McDonald, W. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures, Fatigue & Fracture of Engineering Materials & Structures, 31(8) (2008) 674-683.
[21] D. Broda, W. Staszewski, A. Martowicz, T. Uhl, V. Silberschmidt, Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—A review, Journal of Sound and Vibration, 333(4) (2014) 1097-1118.
[22] A. Martowicz, W.J. Staszewski, M. Ruzzene, T. Uhl, Vibro-acoustic wave interaction in cracked plate modeled with peridynamics, A Proceedings of the WCCM XI, ECCM V, ECFD VI, Onate E., Oliver X., Huerta (eds.), International Center for Numerical Methods in Engineering, Barcelona, Spain, (2014) 4021-4027.
[23] A. Martowicz, P. Packo, W.J. Staszewski, T. Uhl, Modelling of nonlinear vibro-acoustic wave interaction in cracked aluminium plates using local interaction simulation approach, in: 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, 2012.
[24] A. Martowicz, M. Ruzzene, W.J. Staszewski, T. Uhl, Non-local modeling and simulation of wave propagation and crack growth, in: AIP Conference Proceedings, American Institute of Physics, 2014, 513-520.
[25] N. Sepehry, M. Ehsani, M. Shamshirsaz, M. Sadighi, Contact acoustic nonlinearity identification via online vibro-acoustic modulation technique, Modares Mechanical Engineering, 20(7) (2020) 1719-1730.
[26] S.E. Lee, S. Jin, J.-W. Hong, Microcrack modeling and simulation for nonlinear wave modulation, in: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, International Society for Optics and Photonics, 2016, 98033J.
[27] A.K. Singh, B.-Y. Chen, V.B. Tan, T.-E. Tay, H.-P. Lee, Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites, Ultrasonics, 74 (2017) 89-98.
[28] X. Zhang, The fourier spectral element method for vibration analysis of general dynamic structures, Wayne State University Dissertations (2011).
[29] Z. Su, G. Jin, Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method, The Journal of the Acoustical Society of America, 140(5) (2016) 3925-3940.
[30] S. Stoykov, G. Litak, E. Manoach, Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer, The European Physical Journal Special Topics, 224(14) (2015) 2755-2770.
[31] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, Thermo-Electro Mechanical Impedance based Structural Health Monitoring: Euler-Bernoulli Beam Modeling, AUT Journal of Modeling and Simulation, 49(2) (2017) 143-152.
[32] S.S. Rao, Vibration of continuous systems, Wiley Online Library, 2007.
[33] N. Sepehry, M. Shamshirsaz, A. Bastani, Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature, Structural Health Monitoring, 10(6) (2011) 573-585.
[34] A. Konyukhov, R. Izi, Introduction to computational contact mechanics: a geometrical approach, John Wiley & Sons, 2015.
[35] N. Sepehry, M. Ehsani, W. Zhu, F. Bakhtiari-Nejad, Application of scaled boundary finite element method for vibration-based structural health monitoring of breathing cracks, Journal of Vibration and Control, (2020) 1077546320968646.