[1] N. Ahuja, K. Awad, M. Fiedler, P. Aswath, M. Brotto, V. Varanasi, Preliminary study of in‐situ 3D bioprinted nano‐silicate biopolymer scaffolds for muscle repair in VML defects, The FASEB Journal, 34(S1) (2020) 1-1.
[2] J.P. Giraldo, H. Wu, G.M. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors, Nat Nanotechnol, 14(6) (2019) 541-553.
[3] J.C. Montesinos, A. Abuzeineh, A. Kopf, A. Juanes‐Garcia, K. Ötvös, J. Petrášek, M. Sixt, E. Benková, Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage, The EMBO Journal, 39(17) (2020).
[4] B. Geiger, J.P. Spatz, A.D. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, 10(1) (2009) 21-33.
[5] P. Isermann, J. Lammerding, Nuclear Mechanics and Mechanotransduction in Health and Disease, Current Biology, 23(24) (2013) R1113-R1121.
[6] M. Kikumoto, M. Kurachi, V. Tosa, H. Tashiro, Flexural Rigidity of Individual Microtubules Measured by a Buckling Force with Optical Traps, Biophysical Journal, 90(5) (2006) 1687-1696.
[7] M. Kurachi, M. Hoshi, H. Tashiro, Buckling of a single microtubule by optical trapping forces: Direct measurement of microtubule rigidity, Cell Motility and the Cytoskeleton, 30(3) (1995) 221-228.
[8] J.A. Tuszynski, T. Luchko, E.J. Carpenter, E. Crawford, Results of Molecular Dynamics Computations of the Structural and Electrostatic Properties of Tubulin and Their Consequences for Microtubules, Journal of Computational and Theoretical Nanoscience, 1(4) (2004) 392-397.
[9] A. Ghorbanpour Arani, M. Abdollahian, M.H. Jalaei, Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory, Journal of Theoretical Biology, 367 (2015) 29-38.
[10] J. Zhang, S.A. Meguid, Buckling of microtubules: An insight by molecular and continuum mechanics, Applied Physics Letters, 105(17) (2014).
[11] M.D. Koch, N. Schneider, P. Nick, A. Rohrbach, Single microtubules and small networks become significantly stiffer on short time-scales upon mechanical stimulation, Scientific Reports, 7(1) (2017).
[12] T. Surrey, Nédélec, F., Leibler, S., Karsenti, E., Physical Properties Determining Self-Organization of Motors and Microtubules, Science, 292(5519) (2001) 1167-1171.
[13] L. Rayleigh, XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24(147) (2009) 145-159.
[14] G.W. Stewart, Acoustic Wave Filters, Physical Review, 20(6) (1922) 528-551.
[15] M.P. Paidoussis, High-pass acoustic filters for hydraulic loops, Journal of Sound and Vibration, 14(4) (1971) 433-437.
[16] R.A. Johnson, Mechanical Filters. CRC Handbook of Electrical Filters., CRC, 1997.
[17] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, V. Laude, Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Applied Physics Letters, 84(22) (2004) 4400-4402.
[18] S. Yang, J.H. Page, Z. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Focusing of Sound in a 3D Phononic Crystal, Physical Review Letters, 93(2) (2004).
[19] M.I. Hussein, Hulbert, G.M., Scott, R.A.: , Dispersive elastodynamics of 1D banded materials and structures: design, Journal of Sound and Vibration, 307 (2007) 865–893.
[20] S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, High-Q micromechanical resonators in a two-dimensional phononic crystal slab, Applied Physics Letters, 94(5) (2009).
[21] D. Torrent, J. Sánchez-Dehesa, Acoustic cloaking in two dimensions: a feasible approach, New Journal of Physics, 10(6) (2008).
[22] X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode, Physical Review Letters, 106(8) (2011).
[23] M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical crystals, Nature, 462(7269) (2009) 78-82.
[24] B.L. Davis, M.I. Hussein, Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance, Physical Review Letters, 112(5) (2014).
[25] M.I. Hussein, S. Biringen, O.R. Bilal, A. Kucala, Flow stabilization by subsurface phonons, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2177) (2015).
[26] M.I. Hussein, Dynamics of Lattice Materials, John Wiley & Sons Inc, 2017.
[27] A.S. Phani, J. Woodhouse, N.A. Fleck, Wave propagation in two-dimensional periodic lattices, The Journal of the Acoustical Society of America, 119(4) (2006) 1995-2005.
[28] M. Miniaci, A. Krushynska, A.B. Movchan, F. Bosia, N.M. Pugno, Spider web-inspired acoustic metamaterials, Applied Physics Letters, 109(7) (2016).
[29] Q.J. Lim, P. Wang, S.J.A. Koh, E.H. Khoo, K. Bertoldi, Wave propagation in fractal-inspired self-similar beam lattices, Applied Physics Letters, 107(22) (2015).
[30] E. Boatti, N. Vasios, K. Bertoldi, Origami Metamaterials for Tunable Thermal Expansion, Advanced Materials, 29(26) (2017).
[31] D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, A. Vaziri, Honeycomb phononic crystals with self-similar hierarchy, Physical Review B, 92(10) (2015).
[32] W. David V. Hutton Pullman, Fundamentals of Finite Element Analysis, The McGraw−Hill Companies 2004.
[33] F. Farzbod, M.J. Leamy, Analysis of Bloch’s Method in Structures with Energy Dissipation, Journal of Vibration and Acoustics, 133(5) (2011).
[34] H. Jafari, M.H. Yazdi, M.M.S. Fakhrabadi, Damping effects on wave-propagation characteristics of microtubule-based bio-nano-metamaterials, International Journal of Mechanical Sciences, 184 (2020).
[35] H. Jafari, M.R.H. Yazdi, M.M.S. Fakhrabadi, Wave propagation in microtubule-based bio-nano-architected networks: A lesson from nature, International Journal of Mechanical Sciences, 164 (2019).